

FINAL

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Naval Support Activity Crane Crane, Indiana

Naval Facilities Engineering Command Midwest

Contract Number N62470-08-D-1001 Contract Task Order F279

September 2013

FINAL BASEWIDE PENNSYLVANIAN BEDROCK BACKGROUND GROUNDWATER EVALUATION REPORT

NAVAL SUPPORT ACTIVITY CRANE CRANE, INDIANA

COMPREHENSIVE LONG-TERM ENVIRONMENTAL ACTION NAVY (CLEAN) CONTRACT

Submitted to:
Naval Facilities Engineering Command Midwest
201 Decatur Avenue Building 1A, Code EV
Great Lakes, Illinois 60088

Submitted by:
Tetra Tech
234 Mall Boulevard, Suite 260
King of Prussia, Pennsylvania 19406

CONTRACT NUMBER N62470-08-D-1001 CONTRACT TASK ORDER F279

SEPTEMBER 2013

PREPARED UNDER THE DIRECTION OF:

TIMOTHY S. EVANS PROJECT MANAGER

TETRA TECH

PITTSBURGH, PENNSYLVANIA

APPROVED FOR SUBMISSION BY:

JOHN T. TREPANOWSKI, P.E.

PROGRAM MANAGER

TETRA TECH

KING OF PRUSSIA, PENNSYLVANIA

Section: Table of Contents and Abbreviations and Acronyms
Page 1 of 4

TABLE OF CONTENTS

SECT	<u>ION</u>		PAGE NO.
ABBF	REVIATIO	NS AND ACRONYMS	9
1.0	INTRO	DUCTION	1-1
	1.1	PURPOSE AND SCOPE	
	1.2	REPORT ORGANIZATION	1-3
2.0	BACKG	ROUND INFORMATION	2-1
	2.1	FACILITY LOCATION AND DESCRIPTION	2-1
	2.2	FACILITY HISTORY	2-1
	2.3	GEOLOGY	2-2
	2.3.1	Unconsolidated Deposits	2-2
	2.3.2	Bedrock	
	2.4	HYDROGEOLOGY	
	2.5	PREVIOUS BACKGROUND AND PENNSYLVANIAN BEDROCK STUDIES	2-5
3.0	METHO	DOLOGY	3-1
	3.1	DATA SET SELECTION AND RATIONALE	3-1
	3.1.1	SWMU 01, Mustard Gas Burial Ground	3-2
	3.1.2	SWMU 08, Building 106 Pond	3-3
	3.1.3	SWMU 09, Pesticide Control Area/R-150 Tank	
	3.1.4	SWMU 10, Rockeye	
	3.1.5	SWMU 12, Mine Fill A	
	3.1.6	SWMU 13, Mine Fill B	
	3.1.7	SWMU 16, Cast High Explosives Fill/Building 146 Incinerator	3-5
	3.1.8	SWMU 18, Load and Fill Area	
	3.1.9	SWMU 22, Lead Azide Pond	
	3.2	DATA USABILITY	
	3.2.1	Sampling and Analyses	
	3.2.2	Data Quality Review	
	3.3	STATISTICAL ANALYSIS	3-10
4.0		ATION OF BACKGROUND CONCENTRATIONS	4-1
	4.1	STATISTICAL EVALUATION SUMMARY	
	4.2	COMPARISON OF SITE TO BACKGROUND CONCENTRATIONS	4-1
RFFF	RENCES		R-1

NSA Crane
Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report
Revision: 0
Date: September 2013

Section: Table of Contents and Abbreviations and Acronyms
Page 2 of 4

TABLE OF CONTENTS (Continued)

APPENDICES

Α	1989 INDIANA GEOLOGICAL SURVEY STUDY INFORMATION
В	BORING LOGS AND WELL CONSTRUCTION DIAGRAMS
С	CORRELATION PLOTS OF METALS AND pH
D	GROUNDWATER POTENTIOMETRIC SURFACE MAPS
Е	STATISTICAL ANALYSIS

TABLES

NUMBER

3-1	Monitoring Well Information
3-2	Analytical Data Set

4-1 **Summary Statistics**

FIGURES

NUMBER

2-1	Facility Location and Bedrock Geologic Map
2-2	Solid Waste Management Units
0 0	Conform Conton Man

2-3 Surface Geology Map

- 2-4 Stratigraphic Column for Crane Area
- 3-1 Monitoring Well Location Map

021304/P CTO F279

Revision: 0

Date: September 2013

Section: Table of Contents and Abbreviations and Acronyms

Page 3 of 4

ABBREVIATIONS AND ACRONYMS

ABG Ammunition Burning Grounds

AOC Area of Concern

ASD Applied Science Department

B&R Environmental Brown and Root Environmental

bgs below ground surface

CLEAN Comprehensive Long-Term Environmental Action Navy

COC Chemical of concern

COPC Chemical of potential concern

CTO Contract Task Order

DoD Department of Defense

DQI Data quality indicator

EAD Explosive Actuating Device

FOD Frequency of detection

IA Initial Assessment

IAS Initial Assessment Study

IDEM Indiana Department of Environmental Management

IGS Indiana Geological Survey

KM Kaplan-Meier

NACIP Navy Assessment and Control of Installation Pollutants

NAD Naval Ammunition Depot

NAD83 North American Datum of 1983

NAVD88 North American Vertical Datum of 1988 NAVFAC Naval Facilities Engineering Command

NEESA Naval Energy and Environmental Support Activity

NSA Naval Support Activity

NSWC Naval Surface Warfare Center
ORP Oxidation-Reduction Potential

Plz Pennsylvanian bedrock (lower zone)

Pmz Pennsylvanian bedrock (middle zone)

Puz Pennsylvanian bedrock (upper zone)

RCRA Resource Conservation and Recovery Act

RFI RCRA Facility Investigation

SP Special Program

SWMU Solid Waste Management Unit

021304/P CTO F279

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report
Revision: 0
Date: September 2013

Section: Table of Contents and Abbreviations and Acronyms
Page 4 of 4

TAL Target Analyte List Tetra Tech Tetra Tech, Inc. μg/L Micrograms per liter

USACE United States Army Corps of Engineers

U.S. EPA United States Environmental Protection Agency

UTL Upper tolerance limit

WES Waterways Experiment Station

CTO F279 021304/P

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 1 Page 1 of 3

1.0 INTRODUCTION

This report presents results and conclusions of the Basewide Pennsylvanian Bedrock Background Groundwater Evaluation at Naval Support Activity (NSA) Crane, Crane, Indiana. This report has been prepared for the U.S. Department of the Navy by Tetra Tech, Inc., for the Naval Facilities Engineering Command (NAVFAC) Midwest under Contract Task Order (CTO) F279 of the Comprehensive Long-Term Environmental Action Navy (CLEAN) Contract Number N62470-08-D-1001.

This background groundwater evaluation was conducted to support applicable Resource Conservation and Recovery Act (RCRA) Corrective Action requirements, including RCRA Facility Investigations (RFIs) and other related environmental investigations to be conducted at NSA Crane under the Navy's Installation Restoration Program. The environmental investigations are the basis for determining whether groundwater conditions at a particular SMWU represent unacceptable risks to human health if exposure occurs. The background groundwater evaluation provides data on metals concentrations in groundwater in the Pennsylvanian-age aquifer at NSA Crane not impacted by site operations at Solid Waste Management Units (SWMUs) or Areas of Concern (AOCs). The first step when evaluating the risk of inorganic chemicals is generally a comparison of the chemical concentrations measured in site groundwater to their background concentrations. Background concentrations are those concentrations that would be naturally occurring in the absence of impact from site operations. These comparisons are made because many inorganic chemicals occur naturally in the environment. Concentrations associated with specific SWMUs may then be compared with background concentrations to determine if a contaminant release has potentially occurred as a result of the site operations. In accordance with RCRA (U.S. EPA, 1989a) and risk assessment guidance (U.S. EPA, 1989b), if measured site concentrations are not significantly greater than background concentrations, it may be inferred that an operationally related release of those contaminants has not occurred, and the site investigation is often terminated at that point if inorganics are the only issue. If site concentrations exceed background concentrations, additional assessment and/or remediation may be warranted.

1.1 PURPOSE AND SCOPE

This evaluation was initiated because metals in groundwater in Pennsylvanian-age bedrock throughout NSA Crane have consistently been identified as chemicals of concern (COCs), but the concentrations are generally consistent across NSA Crane. Based on the ubiquity of the specific metals detected and the similarity of concentrations, a problem statement was developed for this evaluation: Are metals concentrations detected in groundwater from Pennsylvanian bedrock at various SWMUs and AOCs at

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 1 Page 2 of 3

NSA Crane representative of natural background levels, or are they attributable, either directly or indirectly, to contaminant releases associated with SWMU or AOC operations or other past uses? If chemicals are released to the environment, groundwater metals concentrations can potentially increase as a result. This could occur as direct contamination if released chemicals migrate directly to groundwater or indirectly if organic chemicals released to the environment alter the local geochemical conditions [e.g., pH and oxidation-reduction (redox) potential] to increase the rate of leaching of inorganic constituents from the geologic matrix of the bedrock. In general, a reduction in pH or redox potential increases the potential for leaching. Each inorganic constituent in the geologic matrix, usually in the form of metal salts or chemical complexes, is affected differently by a given change in geochemical conditions. Another factor for consideration is that Pennsylvanian-age bedrock at NSA Crane is relatively high in organic carbon and that this naturally occurring carbon could lead to the same geochemical conditions

The primary objective of this evaluation was to establish a statistically based data set of concentrations of inorganic constituents in groundwater in Pennsylvanian-age bedrock at NSA Crane for comparison with site data to determine whether detected constituents are site-related or background conditions and to identify chemicals of potential concern (COPCs) to be further evaluated in a risk assessment. The secondary objective of this investigation was to compile the background data so that a minimum detectable concentration difference between contaminated groundwater and background groundwater data sets could be computed for individual site investigations. The intent was that the background data set would enable the detection of concentration differences between data sets equal to two standard deviations of the background metal concentrations.

conducive to metals leaching as a chemical contaminant release.

The background data set presented in this report is intended to be a benchmark to which past, current, and future NSA Crane SWMU and AOC investigation groundwater data will be compared. The background data set is to be applied to investigations of groundwater in Pennsylvanian-age bedrock at NSA Crane. Furthermore, the data set is intended to be representative of and comparable for total metals concentrations rather than dissolved metals concentrations from filtered samples. Total metals values represents the sum of metals concentrations in the dissolved and suspended solids phases of a groundwater sample that are recoverable by standard sample digestion processes for environmental investigations. This evaluation has been limited to the metals analyzed for [i.e., Target Analyte Metals (TAL) metals and tin], as these are the metals evaluated in RFIs at NSA Crane.

This evaluation was an observational study that used available groundwater data from RFIs that have been conducted throughout NSA Crane to date. Because the data sets from these RFIs were validated

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 1 Page 3 of 3

and used for decision-making purposes, no data collection was conducted specifically for the purpose of

characterizing basewide groundwater conditions.

1.2 REPORT ORGANIZATION

The remaining sections of this report are organized as follows:

• Section 2.0 provides a description of NSA Crane physical characteristics, brief summaries of the

SWMUs and AOCs at the facility, and the geology and hydrogeology of the Pennsylvanian-age

bedrock at NSA Crane.

• Section 3.0 describes the methodology used in this evaluation. It includes the data set development

methodology, including monitoring well selection and rationale, and the statistical methodology for

evaluation of the data set.

Section 4.0 provides the results of the evaluation and a methodology for use of the findings of this

report for data comparisons in future site investigations.

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 2 Page 1 of 6

2.0 BACKGROUND INFORMATION

This section provides a discussion of site characteristics at the NSA Crane facility, including site location, physiography, topography, and land use; site history; and, geology and hydrogeology. It also includes a discussion of previous background and Pennsylvania bedrock studies.

2.1 FACILITY LOCATION AND DESCRIPTION

NSA Crane is situated in a rural area of south-central Indiana. NSA Crane is located in the southern portion of Indiana, approximately 75 miles southwest of Indianapolis, 60 miles northwest of Louisville, Kentucky, and immediately east of Burns City and Crane Village, Indiana. NSA Crane encompasses approximately 62,463 acres or approximately 98 square miles of the northern portion of Martin County and smaller portions of Greene, Daviess, and Lawrence Counties. A location map of the NSA Crane facility is presented as Figure 2-1.

NSA Crane is located in the unglaciated area of the Crawford Upland Physiographic Province of the Southern Hills and Lowlands Region of Indiana. This province is characterized as a rugged, highly vegetated, dissected plateau bounded by the Mitchell Plain Physiographic Province to the east and the Wabash Lowland Physiographic Province to the west (Murphy and Wade, 1998). The terrain of NSA Crane is predominantly rolling, with moderately incised stream valleys throughout and occasional flat areas in the central and northern portions of the facility. Ground surface elevations across NSA Crane range from approximately 500 feet to 850 feet relative to the North American Vertical Datum of 1988 (NAVD88).

2.2 FACILITY HISTORY

The facility was commissioned in 1941 as the Naval Ammunition Depot (NAD) Burns City to serve as an inland munitions production and storage center for the Navy. Operations at the facility originally included production, testing, and storage of ordnance. The facility was constructed on land publicly acquired under the White River Land Utilization Project (35,000 acres) and land purchased from private ownership (26,830 acres) beginning in 1934. Prior to its acquisition by the Navy, the land was largely used for timber and agriculture (Tetra Tech, 2001). The name of the facility was changed in 1943 to NAD Crane, in 1975 to the Naval Weapons Support Center, and in 1992 to Naval Weapons Support Center (NSWC) Crane. In 2003, NSWC Crane operations fell under the command structure of NSA Crane during regional reorganization by the Navy. Department of Defense (DoD) ammunition procurement responsibility was transferred to the Army in 1977. The Army assumed ordnance production, storage, and related responsibilities at the facility, which continues to the present.

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 2 Page 2 of 6

Initial environmental investigations performed at NSA Crane were the Initial Assessment (IA) (U.S. Army,

1978) and Initial Assessment Study (IAS) (NEESA, 1983). The purpose of the IA was to investigate

potential contaminant releases to the environment from past operations and to determine the potential of

these releases to migrate beyond the facility boundaries. It was completed in 1977 and consisted of a

records search and interviews with former and present employees at NSA Crane. The intent of the IAS

was to identify and assess sites posing a potential threat to human health and the environment from past

hazardous materials operations. It began in response to the Navy Assessment and Control of Installation

Pollutants (NACIP) Program and was completed in 1983 by the Naval Energy and Environmental Support

Agency (NEESA) with assistance from the Ordnance Environmental Support Agency and United States

Army Corps of Engineers (USACE) Waterways Experiment Station (WES). Although none of the sites

investigated were determined to represent immediate human health or environmental threats, 14 sites

were recommended for further study to evaluate potential long-term impacts.

Based on these initial assessments and subsequent investigations, 34 SWMUs and a small number of

AOCs requiring environmental investigation have been identified at NSA Crane. Figure 2-2 shows the

locations of the SWMUs with currently active or completed environmental corrective actions. Because

NSA Crane operates under a RCRA Part B permit, investigation and remediation activities at the SWMUs

are conducted under RCRA corrective action, administered by Indiana Department of Environmental

Management (IDEM).

2.3 GEOLOGY

The geology at NSA Crane is generally characterized by thin overburden deposits overlying bedrock.

The overburden deposits at NSA Crane generally consist of two types, Quaternary-age unconsolidated

deposits and unconsolidated residual soil derived from underlying bedrock. With the exception of minor

outwash and lacustrine deposits in the northwestern comer of the facility, NSA Crane was unglaciated

during the Pleistocene epoch. Bedrock underlying NSA Crane consists of sedimentary rocks from the

Lower Pennsylvanian-age Raccoon Creek Group and Upper Mississippian-age Stephensport and West

Baden Groups.

2.3.1 <u>Unconsolidated Deposits</u>

The Quaternary-age deposits consist of alluvial (stream-derived sediments), colluvial (sediments

deposited at the foot of a slope via gravity), and glacial outwash deposits consisting of silt, sand, and

021304/P 2-2 CTO 0083

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 2 Page 3 of 6

gravel; lacustrine deposits consisting of clay, silt, and sand; and loess deposits consisting of clay and silt.

Unconsolidated deposits at NSA Crane can be found as deep as 65 feet bgs (Nohrstedt et al., 1998).

Soils at NSA Crane were derived from underlying sedimentary rocks of the Lower Pennsylvanian

Raccoon Creek Group and Upper Mississippian Stephensport and West Baden Groups and consist of

clay, silt, sand, and fragmented and/or weathered bedrock.

2.3.2 Bedrock

NSA Crane is located on the eastern edge of the Illinois Structural Basin. The Pennsylvanian- and

Mississippian-age bedrocks dip to the west-southwest and southwest at approximately 30 to 35 feet per mile

(Kvale, 1992). Bedrock underlying NSA Crane consists of sedimentary rocks from the Lower

Pennsylvanian-age Raccoon Creek Group and Upper Mississippian-age Stephensport and West Baden

Groups. Figure 2-1 shows the geology of Indiana, and Figure 2-3 shows the surficial geology of NSA

Crane. A generalized stratigraphic column of bedrock in the NSA Crane area is shown on Figure 2-4.

The Lower Pennsylvanian-age bedrock (Raccoon Creek Group) at the facility primarily consists of

interbedded sandstone, siltstone, shale, and coal with total thicknesses varying from 0 to more than

300 feet (Fisher, 1996). The underlying Missisippian-age bedrock consists of limestone, shale, and

sandstone (Murphy and Wade, 1995 and Palmer, 1969). The Raccoon Group lies unconformably on the

Mississippian-age bedrock units; the relief of the unconformity has been measured to be as much as

100 feet (Kvale, 1992).

Pennsylvanian-age bedrock is the uppermost bedrock unit across most of NSA Crane, with approximately

74 percent (46,280 acres or 72 square miles) of NSA Crane covered by the Raccoon Creek Group.

Mississippian-age bedrock is principally exposed in the major drainages in the eastern half of NSA Crane,

where streams have eroded the Pennsylvanian-age bedrock caprock. A large number of SWMUs are

located on ridges or other topographically high areas, primarily on Pennsylvanian-age bedrock. One

exception to this generalization is the Ammunition Burning Ground (ABG), which is located over

Mississippian bedrock (Fisher, 1996).

The Raccoon Creek Group at NSA Crane is interpreted to be interbedded clastic sediments of the

Mansfield Formation (Kvale, 1994). The sedimentary facies of the Mansfield Formation at NSA Crane

have been interpreted to be of tide-dominated estuarine depositional environments (Kvale, 1992). The

Mansfield Formation at NSA Crane is characterized by abundant shale and siltstone with thinly

interbedded sandstone and mudstone and thin discontinuous coal units (Kvale, 1994; Shaver et al.,

1986). The lower section of the Mansfield Formation is dominated by sandstone (Shaver et al., 1986).

021304/P 2-3 CTO 0083

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 2 Page 4 of 6

2.4 HYDROGEOLOGY

At NSA Crane, groundwater is encountered in surficial unconsolidated units and the underlying bedrock; however, the occurrence of groundwater in the overburden is limited to Quaternary-age units in the northwestern corner of NSA Crane and in alluvial deposits along the major drainages or water bodies. Commonly, groundwater is not encountered in the overburden along ridges or hillslopes, where only a thin residuum of soil is present. If present, groundwater in the overburden in these areas occurs as isolated perched zones.

Groundwater in bedrock at NSA Crane occurs in the Pennsylvanian and Mississippian units. Because shallow bedrock at NSA Crane is primarily Pennsylvanian-age units and the majority of investigations are within these units, this evaluation is limited to Pennsylvanian-age bedrock units. Groundwater in the Pennsylvanian-age bedrock is present in the secondary porosity of the rock units (i.e., jointing, fractures, or bedding contacts), with groundwater entering the bedrock through infiltration. Groundwater flow in the shallow bedrock generally mimics topography, with flow toward the crop line, and groundwater discharging to gullies or hillslopes on the sides of ridges or to surface soils and gradually evaporates. Groundwater in deeper zones flows to regional groundwater discharge areas or base levels; the direction of flow in the deeper zones may be different than in shallow zones.

Groundwater in Pennsylvanian-age bedrock occurs in several individual zones at different depths in the formation sequence. The zones are generally distinguished by marked head elevation differences and are generally isolated from one another vertically by less permeable shale or siltstone units. The zones are typically grouped into three water-bearing zones in the Pennsylvanian-age rock units: upper (Puz), middle (Pmz), and lower zones (Plz). At individual sites, the first encountered water-bearing zone is identified as the Puz; subsequent zones encountered with depth are identified as the Pmz and Plz, accordingly. These zones have not been correlated across NSA Crane, except for cases where sites are in close proximity. For example, a water-bearing zone identified as Puz at one site may correlate stratigraphically with a zone identified as Pmz at an adjacent site. For the purposes of this evaluation, the statistical analyses were performed for the entire data set for wells screened in the Pennsylvanian-age, regardless of zone identification (i.e., Puz, Pmz, or Plz). The rationale for this was primarily that the groundwater geochemistry of the Pennsylvanian-age water-bearing zones was considered to be similar between zones, given the similar lithologies. This also allows for a larger data set and as a result less uncertainty in the statistical evaluation.

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 2 Page 5 of 6

2.5 PREVIOUS BACKGROUND AND PENNSYLVANIAN BEDROCK STUDIES

Background concentrations of select inorganics in soils at NSA Crane were evaluated during a base-wide background soils investigation in 2001 (Tetra Tech, 2001). The objective of the investigation was to identify and chemically characterize native soils based on three factors: depositional environment, grain size, and depth. A total of 16 soil types were identified and evaluated in the report, based on combinations of these three factors. Four depositional environments were identified at NSA Crane, based on the mapped geologic parent material: Pennsylvanian bedrock, Mississippian bedrock, alluvium, and loess. Three predominant grain sizes (clay, silt, and sand) and two depths (surface and subsurface) were also identified as factors possibly contributing to soil chemical characteristics. Soil samples were collected to establish representative background metals concentrations for each of the 16 soil types. The background soil data sets can be used for direct comparison of site data to background data descriptive statistics [minimum, maximum, and average values in a data set as well as upper tolerance limit (UTL) values] or through direct comparison of background and site data distributions using a statistical comparison.

Multiple studies have been conducted at NSA Crane related to characterization of Pennsylvanian-age bedrock and groundwater. These studies, however, have focused principally on the hydrogeological properties and sedimentology of the Pennsylvanian-age aquifers. These studies were completed by the Indiana Geological Survey (with cooperation from USACE WES) and include those by Barnhill (1992); Barnhill and Hansley (1993); Fisher (1996); Fisher, Barnhill, and Revenaugh (1998); and, Kvale (1994).

An assessment of metals in bedrock groundwater in southern Indiana was conducted by the Indiana Geological Survey (IGS) in 1989 to evaluate concentrations of lead exceeding U.S. EPA guidelines in a number of domestic wells in southern Indiana. The study attempted to relate water chemistry to aquifer mineralogy and chemistry through association of analytical results with lithology. The study covered three bedrock regions in southern Indiana. Region 1 included an area where wells were completed in the Devonian-Mississippian-age New Albany Shale, Region 2 covered an area with wells completed in Mississippian-age Salem and/or St. Louis Limestones, and Region 3 covered an area with wells completed in Mississippian and/or Pennsylvanian-age rock in the Wabash Lowland Physiographic Province. Three areas in Region 3 were tested. These areas (Epsom, Odon-Elnora, and Linton) are located in Daviess and Greene Counties. These areas in Region 3 were selected based on mining activities, both surface and subsurface and historical and current (as of 1988). Twenty-eight wells were identified in the study as being screened solely in Pennsylvanian-age bedrock.

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 2 Page 6 of 6

Analyses in the 1989 IGS study included metals (arsenic, barium, cadmium, calcium, chromium, iron,

lead, magnesium, manganese, mercury, potassium, selenium, silver, sodium, strontium, and zinc),

chloride, fluoride, nitrate, sulfate, total dissolved solids, hardness, alkalinity, bicarbonate and carbonate,

as well as water quality parameters of pH, temperature, specific conductance, dissolved oxygen, and Eh.

Appendix A includes the 1989 IGS study results for Region 3, which includes the wells in Pennsylvanian-

age bedrock (shown as highlighted).

The results of the IGS study were not included in the data set for this evaluation. The samples collected

for the 1989 IGS study were field-filtered prior to sample preservation; therefore, the study results

represent dissolved metals. As environmental investigations and risk assessments at NSA Crane are

based on unfiltered samples results (i.e., total metals), the results of the IGS study were not considered

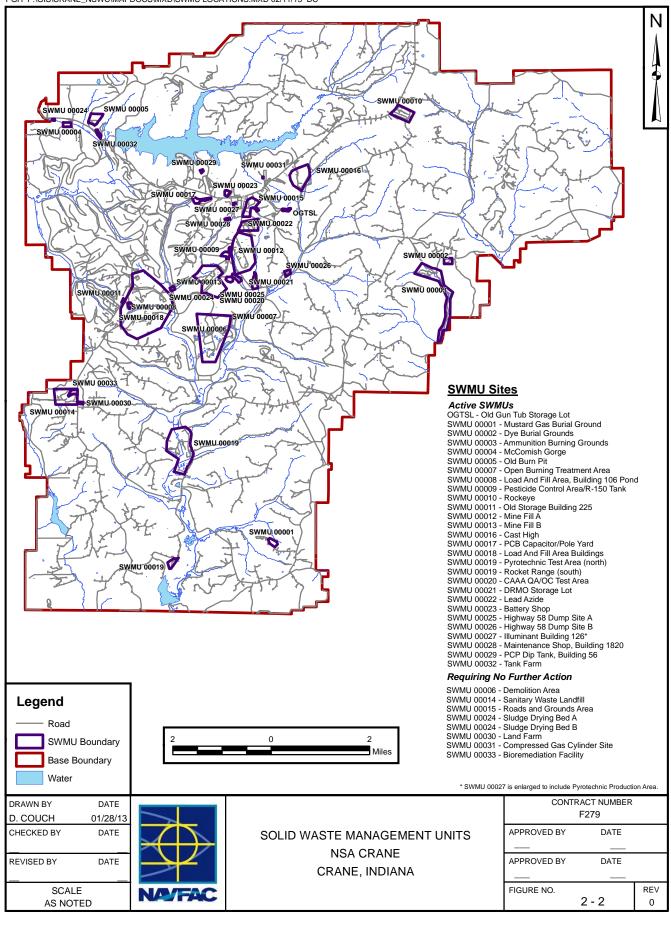
comparable and could not be included in the data set for this evaluation.

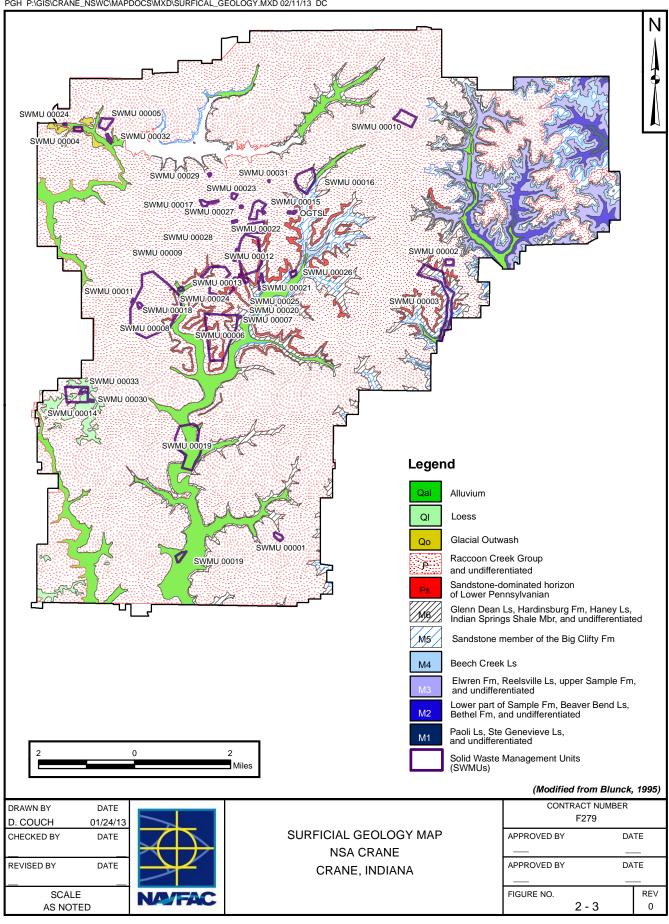
In addition, several chemical (arsenic, iron, and manganese) and geochemical [pH and oxidation-

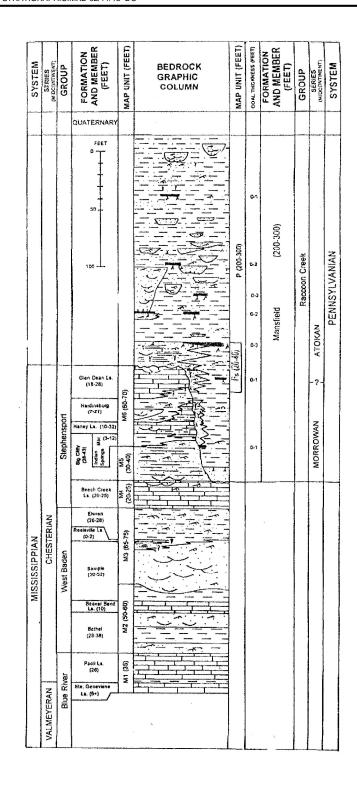
reduction potential (ORP)] parameters were plotted for the 1989 IGS study data against the NSA Crane

background data set (discussed in detail in Sections 3 and 4 of this report). The plots are provided in

Appendix A. The plots indicate that the two data sets represent two separate populations, based on the


clustering of the data. The pH values of the NSA Crane are also lower than those from the 1989 IGS


study. The pH can directly influence potential solubility of metals, with lower pH generally promoting


leaching of metals (discussed in Section 3.1). These differences in the data sets further support

exclusion of the 1989 IGS study data from the current evaluation.

021304/P 2-6 CTO F279

Source: Kvale, 1992; Kvale, 1994

DRAWN BY DATE
D. COUCH 01/24/13
CHECKED BY DATE

REVISED BY DATE

SCALE
AS NOTED

STRATIGRAPHIC COLUMN
FOR CRANE AREA
NSA CRANE
CRANE, INDIANA

CONTRACT NUMBER F279							
APPROVED BY	DATE						
APPROVED BY	DATE						
FIGURE NO.	REV 0						

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 3

Page 1 of 10

3.0 METHODOLOGY

This section presents a discussion of the selection and rationale of the groundwater data set and

methods used in the statistical evaluation of the background data.

3.1 DATA SET SELECTION AND RATIONALE

The data set for the background evaluation included data from existing monitoring wells installed in

Pennsylvanian-age bedrock at NSA Crane. No new wells were installed and no samples were collected

for this evaluation.

The background areas and locations for inclusion in the data set were selected to ensure that the data

used represented natural conditions that are unaffected by site-specific operations. The criteria used to

ensure representativeness, followed by a brief description, were as follows:

· Groundwater monitoring wells screened within Pennsylvanian-age bedrock. The wells may be

screened in any of the three water-bearing zones (upper, middle, or lower), but the entire screened

interval must be within the Pennsylvanian bedrock.

Located hydraulically upgradient of or vertically separated from potential site contaminant releases

from a site that has been identified as a potential source of either inorganic or organic contaminants.

Although organic contaminants are not the subject of this evaluation, the presence of organic

contaminants in groundwater could potentially alter chemical oxidation-reduction conditions and

cause metals to leach from the geologic matrix that would otherwise not leach or would not leach as

rapidly. Background well locations were identified by reviewing existing RFI reports and related

information, specifically groundwater elevation contour and flow depictions.

Metals concentration data spanning several years of sampling to ensure that a thoroughly

representative cross-section of groundwater chemistry is included in the statistical analysis.

Metals concentration data representing as much area of NSA Crane as possible to ensure that spatial

variations in the Pennsylvanian aquifer are represented and minimize potential no spatial correlation.

Information regarding monitoring wells at NSA Crane was reviewed to: (1) identify wells screened in the

Pennsylvanian bedrock and (2) determine the wells located in hydraulically upgradient locations and not

021304/P 3-1 CTO F279

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 3

Page 2 of 10

affected by site-specific operations or contamination. The principal sources of information were RFI

reports for individual SWMUs. Twenty-one wells in nine SWMUs were identified that met the criteria

discussed above. Well construction information for these wells is provided in Table 3-1, and the locations

of these wells are shown on Figure 3-1. Boring logs and well construction diagrams for the wells are

provided in Appendix B. Seventeen of the wells selected are screened in the Puz. One well (12MWT33)

is screened in the Pmz, and three wells (01-06, 10C52, and 13MWT28) are screened in the Plz. The four

wells from SWMU 09 did not have a zone identified in the investigation reports; however, based on the

shallow depths of the screened intervals (less than 25 feet bgs), it is assumed that these wells are

screened in the Puz.

Background groundwater data are available for NSA Crane from 1981 to 2012. The quality of the metals

data collected by the U.S. Army Corps of Engineers prior to 2000, however, has been questioned by U.S.

EPA Region 5. Therefore, this data was eliminated from consideration for this evaluation. Data from

filtered samples (i.e., dissolved results) and data for field duplicates, which are only used for quality

control purposes, were also eliminated from consideration. Table 3-2 presents the data set used for this

evaluation. Results from 29 groundwater samples were included in this evaluation. The numbers of

metals per sample varied depending on the SWMU-specific requirements for data quality objectives and

intended use of the data; therefore, the number of total metals results varies by metal. Because the data

were collected over approximately 12 years, the data are considered to encompass natural variations in

groundwater chemistry.

In addition, metals may be susceptible to leaching depending on geochemical conditions, particularly pH.

Therefore, to evaluate whether a correlation exists between concentrations and pH, the concentrations of

individual metals for the background groundwater data were plotted against the measured pH values for

the samples. The plots are provided in Appendix C. No correlations with pH were observed in the data.

Therefore, no further consideration was given to pH in this evaluation.

The following subsections discuss the SWMUs with wells included in the data set. Potentiometric surface

maps for individual SWMUs are provided in Appendix D.

3.1.1 <u>SWMU 01, Mustard Gas Burial Ground</u>

One well from SWMU 01 was selected for inclusion in the background data set, 01-06. SWMU 01 is

located in the southeastern portion of NSA Crane (Figure 2-2). SWMU 01 was originally a 2-acre area

surrounded by a fence. This area was used between the end of World War II and 1956 for disposal of

hazardous materials. Disposal was in the form of shallow burials (pits), typically within 6 feet of the

021304/P 3-2 CTO F279

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 3

Page 3 of 10

ground surface. These burials occurred in a small area within the 2-acre site. The smaller area is

approximately 0.2 acres in size and is called the Primary Burial Area. Additional information related to

past operations, environmental investigation history, and COCs is available in the RFI documents for

SWMU 01 (Tetra Tech NUS, 2004).

The location of well 01-06 is shown on Figure 3-1. The potentiometric surface map from the RFI is

provided in Appendix D. Well 01-06 is situated northeast of SWMU 01. Groundwater flow in the Plz at

SWMU 01 is to the southwest. The screened interval of well 01-06 is separated vertically from the Puz at

SWMU 01. No other potential sites have been identified in the Plz upgradient of this well.

3.1.2 <u>SWMU 08, Building 106 Pond</u>

One well from SWMU 08 was selected for inclusion in the background data set, 08MWT07. SWMU 08 is

located in the west-central portion of NSA Crane (Figure 2-2). SWMU 08 includes Building 106, which

was used for the phosphatizing of steel and a cleaning process that consisted of a caustic wash, a

degreaser, and an acid wash. SWMU 08 also includes Building 107, which was originally used to refinish

wooden and metal boxes. Overflow and floor drainage from Buildings 106 and 107 flowed into the

Building 106 Pond. Additional information related to past operations, environmental investigation history,

and COCs is available in the RFI documents for SWMU 08 (Tetra Tech NUS, 2008).

The location of well 08MWT07 is shown on Figure 3-1. The potentiometric surface map from the RFI is

provided in Appendix D. Well 08MWT07 is situated in the north-central portion of SWMU 08.

Groundwater flow is to the southeast. Well 08MWT07 is cross gradient to upgradient of potential site-

related contamination at SWMU 08, and no other potential sites have been identified in the vicinity of this

well.

3.1.3 SWMU 09, Pesticide Control Area/R-150 Tank

Four wells from SWMU 09 were selected for inclusion in the background data set, 09-10, 09-WTP6,

09T01, and 09T05. SWMU 09 is located in the central portion of NSA Crane, on the western side of

Highway 45 (Figure 2-2). Former Building 55, Building 2189, and the R-150 Tank Area, were originally

defined as SWMU 09. Following initial RFI activities, the actual location of Former Building 55 (the

pesticide control building) was discovered to be further south than thought, and three other potential

source areas of contamination were also identified in the southern section of SWMU 9. Subsequently,

the area was subdivided into three areas for the purposes of investigation: SWMU 09 Pesticide

Control/R-150 Tank Area, SWMU 09 North, and SWMU 09 South. Additional information related to past

021304/P 3-3 CTO F279

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 3

Page 4 of 10

operations, environmental investigation history, and COCs is available in the RFI documents for

SWMU 09 (Tetra Tech NUS, 2005a, and Tetra Tech, 2013).

The locations of these wells are shown on Figure 3-1. In Table 3-1, the screened interval is identified as

"Pennsylvanian" only. The water-bearing zones of these wells were not identified in the RFI; however,

based on the relatively shallow well depths (i.e., less than 25 feet bgs), these wells are interpreted to be

screened in the Puz. The potentiometric surface map from the RFI (Tetra Tech NUS, 2005a) is provided

in Appendix D.

The four wells are situated along a ridgeline that trends north-south, with groundwater flow to the west

and southwest across SWMU 09, away from the ridgeline. The wells are upgradient of potential site-

related contamination at SWMU 09, and no other potential sites have been identified in the vicinity of

these wells.

3.1.4 <u>SWMU 10, Rockeye</u>

One well from SWMU 10, 10C52, was selected for inclusion in the background data set. SWMU 10 is

located in the northeastern portion of NSA Crane, on the eastern side of Highway 45 (Figure 2-2).

Rockeye, an operational ammunition facility, is a 10-acre site located on a flattened ridge crest that

separates the Sulphur Creek and Turkey Creek drainage basins. Additional information related to

operations, environmental investigation history, and COCs is available in the RFI for SWMU 10 (Tetra

Tech NUS, 2005a).

The location of well 10C52 is shown on Figure 3-1. The potentiometric surface map from the RFI is

provided in Appendix D. Well 10C52 is situated at the southeastern corner of SWMU 10. Groundwater

flow is to the north and west across SWMU 10, and there is a northeastern component of flow in the area

of 10C52, toward a tributary to Sulphur Creek. Well 10C52 is upgradient of potential site-related

contamination at SWMU 10, and no other potential sites have been identified upgradient of this well.

3.1.5 SWMU 12, Mine Fill A

Four wells from SWMU 12 were selected for inclusion in the background data set, 12MWT25, 12MWT26,

12MWT27, and 12MWT33. SWMU 12 is located in the central portion of NSA Crane, on the eastern side

of Highway 45 (Figure 2-2). Mine Fill A was used for the production of large mines, depth charges, rocket

heads, aerial bombs, and projectiles. Mine Fill A also includes a battery and soil disposal area that is

located at the extreme southern end of the SWMU. Additional information related to past operations,

021304/P 3-4 CTO F279

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 3 Page 5 of 10

environmental investigation history, and COCs is available in the RFI and other corrective action

documents for SWMU 12 (Tetra Tech NUS, 2010a, 2011a, and 2011b).

The locations of the SWMU 12 wells are shown on Figure 3-1. The potentiometric surface maps for the

Puz and Pmz at SWMU 12 from the RFI (Tetra Tech NUS, 2011a) are provided in Appendix D.

Mine Fill A is located on top of a ridge that was flattened to some extent in the 1940s in preparation for

site development (roads, rail lines, buildings, parking lots). The four wells are situated in the

northernmost area of the north-south trending ridge. Groundwater flow in the Puz and Pmz at SWMU 12

is to the southeast, with components to the east and southwest, away from the ridgeline. The wells are

upgradient of potential site-related contamination at SWMU 12, and no other potential sites have been

identified in the vicinity of these wells.

3.1.6 SWMU 13, Mine Fill B

Three wells from SWMU 13 were selected for inclusion in the background data set, 13MWT01,

13MWT03, and 13MWT28. Mine Fill B is located in the central portion of NSA Crane, on the western side

of Highway 45 (Figure 2-2). Mine Fill B was used for the preparation of nitrate and the production of large

mines, depth charges, rocket heads, aerial bombs, and projectiles. Additional information related to past

operations, environmental investigation history, and COCs is available in the RFI and other corrective

action documents for SWMU 13 (Tetra Tech NUS, 2007, 2010b, and 2011c).

The locations of the SWMU 13 wells are shown on Figure 3-1. The potentiometric surface maps for the

Puz and Plz at SWMU 13 from the RFI (Tetra Tech, 2007) are provided in Appendix D.

Mine Fill B lies on top of a ridge that was flattened to some extent in the 1940s in preparation for the

construction of buildings, roads, and associated parking and staging areas. The four wells are situated in

the northeasternmost area of Mine Fill B, along Highway 45. Groundwater flow in the Puz at SWMU 13 is

to the southwest, with components to the northwest and southeast, away from the ridgeline. The wells

are upgradient of potential site-related contamination at SWMU 13, and no other potential sites have

been identified in the vicinity of these wells.

3.1.7 SWMU 16, Cast High Explosives Fill/Building 146 Incinerator

Two wells from SWMU 16 were selected for inclusion in the background data set, 16MW02 and

16MWT17. SWMU 16 is located in the north-central portion of NSA Crane, on the southern side of

021304/P 3-5 CTO F279

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 3

Page 6 of 10

Highway 45 (Figure 2-2). Building 146, the largest building at SWMU 16, was an explosives fill and

pressure washout facility. Additional information related to past operations, environmental investigation

history, and COCs is available in the RFI and other corrective action documents for SWMU 16 (Tetra

Tech NUS, 2005b, 2010c, and 2011d).

The locations of the SWMU 16 wells are shown on Figure 3-1. The potentiometric surface map for the

Puz at SWMU 16 from the RFI (Tetra Tech NUS, 2011d) is provided in Appendix D.

SWMU 16 is situated along a northwest-southeast trending ridge, and the selected wells are situated in

the northwestern portion of SWMU 16. Groundwater flow in the Puz at SWMU 16 is to the southeast, with

components to the northeast and southwest, away from the ridgeline. The wells are upgradient of

potential site-related contamination at SWMU 16, and no other potential sites have been identified

upgradient of these wells.

3.1.8 SWMU 18, Load and Fill Area

SWMU 18 is located in the west-central portion of NSA Crane, encompasses approximately 1 square

mile, and includes over 100 buildings (Figure 2-2). Projectile load and fill operations, powder operations,

and propellant testing have been conducted at SWMU 18 since the early 1940s and continued throughout

its operational history. Load and fill operations were conducted in the northern portion of SWMU 18,

principally in Buildings 101, 102, 103, 104, 105, and 189 and also in Buildings 200 and 198 in the

southern portion of SWMU 18. The remaining area of the southern portion of SWMU 18 was used for

research, development, and testing and was referred to as the Applied Science Department Complex.

Current operations within SWMU 18 include renovation, rework, and loading of munitions items; research

and development; and testing. Due to its large size, SWMU 18 was subdivided into the following 10

subareas based on similar operations or use and geographic proximity to facilitate more efficient and

effective investigation:

Subarea A: Building 105 Area

Subarea B: Buildings 101, 102, and 103 Area

Subarea C: Inert Operation Area

Subarea D: Special Program (SP) Area

Subarea E: Building 104 Area

Subarea F: Buildings 2084, 2085, and 2540 Area

Subarea G: ASD I Area

Subarea H: Building 198 Area

021304/P 3-6 CTO F279

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 3

Page 7 of 10

Subarea I: Building 200 Area

Subarea J: ASD II Area

RFI activities were conducted at SWMU 18 in 2011. Additional characterization of media in several

subareas is pending.

Four wells from SWMU 18 were selected for inclusion in the background data set, 18AMWT001,

18DMWT001, 18GMWT004, and 18IMWT001. The locations of these wells are shown on Figures 3-1.

Preliminary potentiometric surface maps from the RFI conducted in 2011 (in preparation) are provided in

Appendix D.

Highway 45 generally bisects SWMU 18 into northern and southern areas along two east-west trending

ridges. The tops of the ridges are generally cleared and level, whereas the slopes are wooded and steep,

with buildings within SWMU 18 generally situated along the two east-west trending ridges. Groundwater

flow in the Puz in the four subareas with wells included in the background evaluation generally follows

topography. The wells are upgradient of potential site-related contamination at SWMU 18, and no other

potential sites have been identified upgradient of these wells.

3.1.9 SWMU 22, Lead Azide Pond

One well from SWMU 22, 22MWT001, was selected for inclusion in the background dataset. SWMU 22

is located in the central portion of NSA Crane, east of Highway 45, and is referred to as the Explosive

Actuated Device (EAD)/Booster Area or the "Backline." The Booster Area was designed and constructed

to load 5-inch rockets during World War II. EADs were loaded with explosives such as lead azide, lead

styphnate, tetryl, RDX, and black powder. Building 136 was used for the propellant portion, Building 138

was the pressing building for warheads, and Building 2520 was the final assembly building. The area is

currently operated by the Army and is involved in the production of small explosive charges and fuse

maintenance. The buildings associated with the Backline are planned to be demolished in 2011. An

unlined retention pond previously located at the northern end of the Backline, received overflow

wastewater from sumps associated with the process buildings. The retention pond was removed in 1981.

RFI activities were conducted at SWMU 22 in 2011, 2012, and 2013. Preparation of the RFI Report is

pending.

The location of the well from SWMU 22 is shown on Figure 3-1. A preliminary potentiometric surface map

from the RFI activities conducted in 2012 is provided in Appendix D.

3-7 021304/P CTO F279

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 3

Page 8 of 10

SWMU 22 is situated on a portion of the top of a flattened topographic high, and well 22MWT001 is

situated in the northwestern portion of SWMU22, north of Building 138. Groundwater flow in the Puz at

SWMU 22 is to the south toward the drainages. The well is upgradient of potential site-related

contamination at SWMU 22. No other potential sites have been identified upgradient of these well;

however, a potentially impacted area may exist northeast of Building 138 (and northeast of well

22MWT006), in an area not previously investigated. Well 22MWT006 was excluded from the statistical

evaluation based on potential impacts from this area.

3.2 DATA USABILITY

The background data set were collected from environmental investigations at NSA Crane in accordance

with IDEM- and U.S. EPA-approved work plans. The following sections discuss data sampling and

analyses and data quality reviews as they relate to data usability for this evaluation.

3.2.1 Sampling and Analyses

The groundwater samples included in this evaluation were collected using low-flow purging and sampling

techniques to minimize turbidity. Groundwater samples were analyzed using SW-846 Methods 6010 or

6020 (all metals except mercury) or Method 7470 (mercury only), depending on the investigation with

which the samples are associated. Method 6020 is generally less prone to analytical interferences than

Method 6010, and it is also generally more sensitive than Method 6010, depending on the metal being

analyzed. The precision and accuracy of the data are comparable for the two methods, and mixing of

data from two analytical methods was considered to be acceptable for this evaluation.

Specific sampling methods and analyses and additional information related to sampling and analysis may

be found in the SWMU-specific documents listed in the reference section if this report.

3.2.2 <u>Data Quality Review</u>

The data quality objectives and requirements for the data used in this evaluation were investigation

specific and established for each investigation. Data collected for environmental investigations

underwent data quality review to ensure the usability of the data. The review includes data verification

and validation. Verification is a process used to ensure that contractual requirements were satisfied.

Validation is a comparison of data quality indicators (DQIs) to prescribed acceptance criteria to assess

analytical method performance. The DQIs used are measures to assess the bias and precision of the

analytical calibrations and sample analyses. Together, verification and validation are the first steps in

evaluating data completeness, accuracy, sensitivity, comparability, and representativeness. The data

021304/P 3-8 CTO F279

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 3

Page 9 of 10

review process culminated with a data usability assessment presented in the SWMU-specific report

during which the final usability of the data is established relative to the intended data use. All data used

in this background evaluation have undergone data quality review for individual SWMU investigations and

are considered acceptable for use in this evaluation.

Additional information regarding data quality is provided in the following subsections.

3.2.2.1 Data Validation

As part of their respective environmental investigations, the groundwater analytical data were subjected

to data validation and a data usability evaluation, which included assessments of bias, precision,

representativeness, comparability, completeness, and sensitivity. Data validation is an objective

systematic process in which analytical data are reviewed to ascertain the validity of the reported results

and to identify for the data user some possible limitations of these results. Data usability considers the

data validation outputs but includes additional assessments that consider whether the data are usable for

the intended purpose.

Data validation was performed for all samples analyzed. Data validation was completed in accordance

with the procedures for data validation as outlined in Navy guidance (NFESC, 1999 and DOD, 2009).

The data from investigations were validated in accordance with U.S. EPA Contract Laboratory Program

National Functional Guidelines for Inorganic Data Review, as amended (1993 and 2004). The results of

the validation process were summarized in technical memoranda describing qualified analytical results.

All data validation documentation is currently retained on file by Tetra Tech. Investigation reports also

may include copies of the validation memoranda.

The data used for this evaluation are considered usable based on the results of data validation.

3.2.2.2 Bias, Accuracy, and Precision Evaluation

Bias and accuracy of the background groundwater data were found to be acceptable for their intended

investigation-specific use; therefore, the data were used without qualification for this background

evaluation.

021304/P 3-9 CTO F279

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 3

Page 10 of 10

3.2.2.3 Analytical Sensitivity

In general, the investigation-specific detection limits were achieved; therefore, groundwater data from

selected background wells was used without regard to the detection limits that were attained. Table 4-1

presents minimum and maximum detection limits attained.

3.2.2.4 Data Comparability, Completeness, and Representativeness

Sampling methods, sample preservation, and sample storage practices that preserved the integrity of the

groundwater samples were consistent from one investigation to another. The samples selected for this

background groundwater evaluation were collected from wells screened in the upper, middle, and lower

water-bearing zones within the Pennsylvanian bedrock and are therefore considered representative of the

entire aquifer. Analytical methods based on similar techniques and exhibiting similar performance

characteristics were used for all environmental investigations from which background groundwater data

were used. These factors ensured that all groundwater data collected from the background locations are

comparable and representative of the Pennsylvanian bedrock groundwater. This representativeness

spans several years and a large spatial expanse within the NSA Crane boundary, and the data set is

therefore considered a comprehensive set of background groundwater quality data that can be applied to

environmental groundwater investigations of Pennsylvanian bedrock groundwater.

3.3 STATISTICAL ANALYSIS

A series of statistical analyses were conducted to determine a representative background data set for

groundwater data from the selected Pennsylvanian aquifer wells. The conclusions of the statistical

analysis are presented in Section 4, and the methodology and full results of the analysis are discussed in

detail in Appendix E.

Table 3-2 presents the concentrations of metals (total) in samples from the Pennsylvanian aquifer wells

selected for this background evaluation. For the statistical evaluation, the concentration of each metal in

the data set was considered to carry equal weight in terms of characterizing the concentration distribution

of metals in the Pennsylvanian aquifer. Concentrations less than detection limits (i.e., non-detect values)

were replaced with the value of the detection limit.

021304/P 3-10 CTO F279

TABLE 3-1

MONITORING WELL INFORMATION BASEWIDE PENNSYLVANIAN BEDROCK BACKGROUND GROUNDWATER EVALUATION **NSA CRANE, INDIANA**

Monitoring Well ⁽¹⁾	Date of Installation	Coordi	nates ⁽²⁾	Elevation (feet NAVD88)		Total Depth ⁽³⁾	Screened Interval (feet bgs)		Water- Bearing	
	IIIStaliation	Northing	Easting	Ground	Ref. Point	(feet bgs)	Top Bottom		Zone	
SWMU 01 - Mustard Gas Burial Ground										
01-06 (WES-1-6-82)	11/10/1982	3045143.95	1327648.67	595.38	597.98	93.05	75.0	84.4	Pennsylvanian (Lower)	
SWMU 08 - Building 106 Pond										
08MWT07	5/13/2005	1306840.18	3014993.62	699.73	701.31	33.0	18.0	33.0	Pennsylvanian (Upper)	
SWMU 09 - Pesticide Control Area /R-150 Tank	(•				
09-10 (WES-9-10-83)	8/18/1983	1312055.42	3025373.75	723.83	726.51	27.0	11.5	20.6	Pennsylvanian ⁽⁴⁾	
09-WTP6 (WES-WTP6-86)	7/28/1986	1312307.48	3025423.99	733.10	735.09	26.7	20.7	25.7	Pennsylvanian ⁽⁴⁾	
09T01	12/04/2000	1312804.34	3025759.95	737.56	740.02	26.0	11.0	26.0	Pennsylvanian ⁽⁴⁾	
09T05	12/04/2000	1311681.50	3025540.48	716.73	719.19	17.0	7.0	17.0	Pennsylvanian ⁽⁴⁾	
SWMU 10 - Rockeye						•	•			
10C52 (WES-10-52C-88)	06/08/1989	1326218.319	3044737.357	809.42	811.73	83.0	58.0	68.0	Pennsylvanian (Lower)	
SWMU 12 - Mine Fill A						_	_			
12MWT25	09/12/2004	1313924.59	3026269.42	746.55	748.66	26.0	15.0	25.0	Pennsylvanian (Upper)	
12MWT26	09/12/2004	1313638.57	3025981.12	741.64	743.72	25.0	14.0	24.0	Pennsylvanian (Upper)	
12MWT27	09/02/2004	1313736.63	3026477.23	738.42	740.52	26.0	15.0	25.0	Pennsylvanian (Upper)	
12MWT33	09/02/2004	1313725.86	3026481.26	738.32	740.49	95.0	74.0	94.0	Pennsylvanian (Middle)	
SWMU 13 - Mine Fill B										
13MWT01	03/30/2003	1310541.57	3025015.94	713.10	715.34	15.0	5.0	15.0	Pennsylvanian (Upper)	
13MWT03	03/30/2003	1310240.95	3024891.66	718.34	721.10	15.0	5.0	15.0	Pennsylvanian (Upper)	
13MWT28	11/19/2003	1309678.62	3024066.67	703.54	705.55	88.0	78.0	88.0	Pennsylvanian (Lower)	
SWMU 16 - Cast High										
16MW02 (WES-14-02-83)	1983	1321319.90	3032647.27	763.69	766.54	25.8	11.4	20.4	Pennsylvanian (Upper)	
16MWT17	11/08/2003	1321235.88	3032675.07	764.78	766.53	24.0	14.0	24.0	Pennsylvanian (Upper)	
SWMU 18 - Load and Fill Area						·			·	
18AMWT001	12/05/2011	1309581.89	3015573.81	684.49	687.08	24.0	13.0	23.0	Pennsylvanian (Upper)	
18DMWT001	11/07/2011	1307840.00	3016101.97	681.01	683.78	18.5	8.0	18.0	Pennsylvanian (Upper)	
18GMWT004	12/16/2011	1305244.05	3016493.37	654.09	656.72	28.5	17.0	27.0	Pennsylvanian (Upper)	
18IMWT001	11/22/2011	1304198.16	3015031.33	695.63	698.06	31.0	21.0	31.0	Pennsylvanian (Upper)	
SWMU 22 - Lead Azide Pond								·		
22MWT01	05/11/2012	1315811.32	3027409.14	766.47	768.74	25.0	15.0	25.0	Pennsylvanian (Upper)	

NOTES

- (1) Original well designation in parantheses.(2) Indiana State Plane Coordinate System, NAD83.
- (3) Total boring depth.
- (4) Pennsylvanian = zone not specified; assumed to be Pennsylvanian (Upper).

bgs = below ground surface. NAD83 = North American Datum if 1983.

NAVD88 = North American Vertical Datum of 1988.

TABLE 3-2

ANALYTICAL DATA SET BASEWIDE PENNSYLVANIA BEDROCK BACKGROUND GROUNDWATER EVALUATION NSA CRANE, INDIANA PAGE 1 OF 3

SWMU/WELL	WATER- BEARING ZONE	SAMPLE DATE	ALUMINUM	ANTIMONY	ARSENIC	BARIUM	BERYLLIUM	CADMIUM	CALCIUM	CHROMIUM	COBALT	COPPER
SWMU 01 - Must	ard Gas Burial Gro	ound										
01-06	Plz	09/04/2001	40.2 U	1.6 U	3.2 U	21.3	0.4 U	0.3 U	170000	0.6 U	1 U	0.9 U
SWMU 08 - Build	ling 106 Pond											
08MWT07	Puz	06/02/2005	463 J	0.2 U	0.45 U	19.5 J	0.05 U	0.08 J	9640 J	0.58 J	5.3 J	2.1 U
SWMU 09 - Pesti	SWMU 09 - Pesticide Control Area/R-150 Tank											
09-10	Puz	01/31/2001	200 U	1 U	0.75	68.4	1 U	1 U	25800	5 U	3 U	2 U
09T01	Puz	01/31/2001	200 U	1 U	2.9	52.6	1 U	1 U	39400	5 U	3 U	4.4
09T05	Puz	01/30/2001	200 U	1 U	1.5	90.7	1 U	1 U	24000	5 U	18.2	2
09-WTP6	Puz	01/23/2001	200 U	1 U	1 U	19.3	1 U	1 U	59300	5 U	3 U	2 U
SWMU 10 - Rock	eye											
10C52	Plz	01/18/2001	200 U	1 U	1 U	17.9	1 U	1 U	17000	5 U	3 U	2 U
SWMU 12 - Mine	Fill A			_								
12MWT25	Puz	10/10/2004	479	0.085 U	1.1 J	26.2 J	0.1 J	0.14 U	216000 J	1.4 U	53.2 J	3 J
		02/04/2005	192 J	0.085 U	0.27 U	21.8 J	0.04 U	0.04 U	125000 J	0.74 U	12.9 J	3.4 J
12MWT26	Puz	09/26/2004	565 J	0.24 U	2.3 J	38.4 J	0.07 U	0.11 U	92600 J	1.7 J	31.3 J	0.84 J
		02/17/2005	126 J	0.54 U	0.67 U	12.8 U	0.03 U	0.13 U	77900 J	0.72 U	5.6 J	3.5 J
12MWT27	Puz	09/25/2004	323 J	0.22 U	0.58 U	39.1 J	0.03 U	0.05 U	21200 J	1.2 J	11.2 J	0.67 J
		02/07/2005	205 J	0.1 U	0.22 U	20.6 J	0.02 U	0.04 U	16300 J	0.62 U	1.2 U	2 J
12MWT33	Pmz	09/26/2004	37.1 U	0.52 U	2.7 J	13.2 J	1.3 J	0.039 U	61100 J	0.52 U	44.4 J	0.7 J
		02/18/2005	200 J	0.085 U	1.2 U	15.6 U	2.2 J	0.18 U	56400 J	0.76 U	40 J	2.5 J
SWMU 13 - Mine	Fill B											
13MWT01	Puz	04/26/2003	598 J	0.24 U	0.23 U	55.4 J	1.2 U	0.18 U	9720 J	0.2 U	36 J	2.9 J
		11/23/2003	699 J	0.02 U	0.17 U	46.8 J	1.2 U	0.06 U	7190 J	0.73 U	29.9 J	1.4 U
13MWT03	Puz	04/26/2003	3990 J	0.13 U	1 J	74.5 J	1.2 U	0.82 U	34800 J	7.1 J	48.8 J	5.6 J
		11/11/2003	627 J	0.02 U	0.31 U	62.1 J	1.8 U	0.37 U	26100 J	1.4 U	25 J	3.2 J
13MWT28	Plz	12/07/2003	6270 J	2.9 J	15.2 J	65.3 J	0.27 U	0.04 U	10600 J	11.7 J	2 J	1.4 U
SWMU 16 - Cast	High											
16MW02	Puz	04/24/2003	85.6	0.1 U	0.16 U	21.6 J	0.42 U	0.31 U	99400 J	0.43 U	12.9 J	0.87 J
		05/11/2003	60.6 U	0.03 U	0.33 U	18 J	0.34 U	0.22 U	97300 J	0.29 U	9.2 J	0.15 U
		10/25/2003	8.3 U	0.02 U	0.66 J	17.8 J	0.06 U	0.04 U	212000 J	0.17 U	18.7 J	0.12 U
16MWT17	Puz	12/05/2003	187 J	0.05 U	1.3 U	42.7 J	0.69 U	0.53 U	42200 J	0.39 U	64.4 J	0.56 U
SWMU 18 - Load	and Fill Area											
18AMWT001	Puz	01/20/2012	3110 J	2 UJ	1.5 U	35.6	3.01	0.462 J	12300	0.816 J	62	12.3
18DMWT001	Puz	01/17/2012	28.5 J	2 U	1.5 U	75.6	0.5 U	0.5 U	43900	1 U	2.5 U	2 U
18GMWT004	Puz	01/19/2012	6210 J	4 UJ	8.61 J	74.6 J	1.16 J	1 U	24200 J	11.4 J	34 J	21.6 J
18IMWT001	Puz	01/23/2012	8500	4 U	8.28	97.5	0.591 J	1 U	61000	26.2	27.2	16.6
SWMU 22 - Lead	Azide Pond	•	•	•	•		•	•		•	:	
22MWT01	Puz	05/22/2012	NA	NA	1.4	34.2	NA	0.9	NA	4	NA	NA

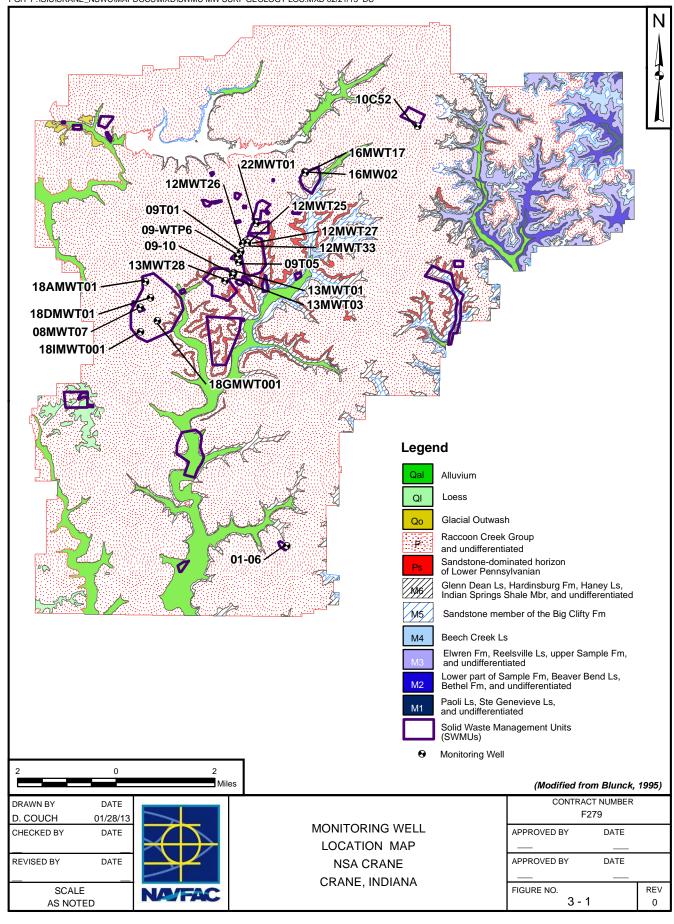
TABLE 3-2

ANALYTICAL DATA SET BASEWIDE PENNSYLVANIA BEDROCK BACKGROUND GROUNDWATER EVALUATION NSA CRANE, INDIANA PAGE 2 OF 3

SWMU/WELL	WATER- BEARING ZONE	SAMPLE DATE	IRON	LEAD	MAGNESIUM	MANGANESE	MERCURY	NICKEL	POTASSIUM	SELENIUM	SILVER
SWMU 01 - Musta	ard Gas Burial Gro	ound							•		
01-06	Plz	09/04/2001	398	1.6 U	156000	37.9	0.1 U	2.6	2790	0.8 U	3
SWMU 01 - Musta	ard Gas Burial Gro	ound									
08MWT07	Puz	06/02/2005	681 J	0.54 J	6750 J	93.9 J	0.03 U	7.8 J	518 J	0.33 J	0.028 U
SWMU 09 - Pestic	ide Control Area/	R-150 Tank									
09-10	Puz	01/31/2001	136	1 U	10600 J	164	0.2 U	10 U	5000 U	1 U	3 UJ
09T01	Puz	01/31/2001	144	1 U	26500 J	34.8	0.2 U	10 U	5000 U	1 U	3 UJ
09T05	Puz	01/30/2001	100 U	1 U	21900 J	178	0.2 U	51.2	5000 U	1 U	3 UJ
09-WTP6	Puz	01/23/2001	149	1 U	19800 J	15	0.2 U	10 U	5000 U	1.1 J	3 U
SWMU 10 - Rocke	eye										
10C52	Plz	01/18/2001	22200	1 U	11800 J	897	0.2 U	10 U	5000 U	1 U	3 U
SWMU 12 - Mine	Fill A								•		
12MWT25	Puz	10/10/2004	1920 J	0.66 U	229000 J	4910 J	0.042 U	103 J	5320 J	3.4 J	0.03 U
		02/04/2005	1110 J	0.425 U	153000 J	2200 J	0.03 U	32 J	3320 J	1.9 J	0.028 U
12MWT26	Puz	09/26/2004	2990 J	0.53 U	70000 J	2520 J	0.14 U	60.1 J	3740 J	0.28 U	0.028 U
		02/17/2005	2010 J	0.157 U	50000 J	1020 J	0.051 U	12.8 J	1630 J	0.99 J	0.028 U
12MWT27	Puz	09/25/2004	482 J	0.37 U	16400 J	701 J	0.03 U	30.7 J	3710 J	0.61 U	0.028 U
		02/07/2005	396 J	0.42 U	16500 J	160 J	0.03 U	7.3 J	1080 J	0.37 U	0.028 U
12MWT33	Pmz	09/26/2004	41800 J	0.34 U	33500 J	3010 J	0.043 U	131 J	4520 J	0.094 U	0.028 U
		02/18/2005	41700 J	1 U	27200 J	1680 J	0.05 U	110 J	4770 J	0.31 U	0.028 U
SWMU 13 - Mine	Fill B										
13MWT01	Puz	04/26/2003	135 J	1.4 U	6790 J	689 J	0.16 J	26.6 J	494 J	0.17 U	0.18 U
		11/23/2003	61.7 U	1.2 U	5850 J	566 U	0.39	21.1 J	403 J	0.05 U	0.03 U
13MWT03	Puz	04/26/2003	1910 J	2 U	17000 J	302 J	0.02 U	99.7 J	2860 J	0.32 U	0.43 U
		11/11/2003	344 U	0.67 U	15800 J	211 J	0.02 U	76.3 J	1040 J	0.04 U	0.03 U
13MWT28	Plz	12/07/2003	2460 J	2.5 U	2950 J	66.7 J	0.007 U	7.1 J	3670 J	4.1 J	0.03 U
SWMU 16 - Cast I	High										
16MW02	Puz	04/24/2003	287 J	0.21 U	6240 J	916 J	0.02 U	34.2 J	738 J	0.05 U	0.09 U
		05/11/2003	415 J	0.28 U	6480 J	864 J	0.2 U	27 J	3390 U	0.06 U	0.04 U
		10/25/2003	13700 J	0.18 U	35200 J	2440 J	0.02 U	36.7 J	2640 J	0.04 U	0.03 U
16MWT17	Puz	12/05/2003	27000 J	0.24 U	16700 J	5940 J	0.007 U	125 J	5380 J	0.07 U	0.03 U
SWMU 18 - Load	and Fill Area										
18AMWT001	Puz	01/20/2012	1970 J	0.75 U	5510	1270	0.2 U	76.1	2230	1.25 U	0.5 U
18DMWT001	Puz	01/17/2012	12.7 J	0.75 U	15100	6.89	0.2 U	1.56 J	1170 J	1.25 U	0.5 U
18GMWT004	Puz	01/19/2012	11300 J	11.7 J	10800 J	1180 J	0.2 UJ	88.1 J	5000 J	2.5 UJ	1 U
18IMWT001	Puz	01/23/2012	22500	15.5	37100	1890	0.2 U	55.8	5370	2.5 U	1 U
SWMU 22 - Lead	Azide Pond								-	<u> </u>	
22MWT01	Puz	05/22/2012	NA	3.2	NA	NA	0.18 U	NA	NA	0.45 J	0.06 U

TABLE 3-2

ANALYTICAL DATA SET BASEWIDE PENNSYLVANIA BEDROCK BACKGROUND GROUNDWATER EVALUATION NSA CRANE, INDIANA PAGE 3 OF 3


SWMU/WELL	WATER- BEARING ZONE	SAMPLE DATE	SODIUM	THALLIUM	TIN	VANADIUM	ZINC			
SWMU 01 - Musta	ard Gas Burial Gro	ound								
01-06	Plz	09/04/2001	17200	5	190 U	3 U	1.1 U			
SWMU 01 - Musta	ard Gas Burial Gro	ound								
08MWT07	Puz	06/02/2005	36500 J	0.26 U	0.1 U	1.14 U	12.4 J			
SWMU 09 - Pesticide Control Area/R-150 Tank										
09-10	Puz	01/31/2001	57600 J	1 U	10 U	2 U	10 U			
09T01	Puz	01/31/2001	134000 J	1 U	10 U	2.1	10 U			
09T05	Puz	01/30/2001	102000 J	1 U	10 U	2 U	25.4			
09-WTP6	Puz	01/23/2001	48900 J	1 U	10 U	2 U	13.2			
SWMU 10 - Rocke	eye									
10C52	Plz	01/18/2001	15700 J	1 U	10 U	2 U	10 U			
SWMU 12 - Mine	Fill A			_						
12MWT25	Puz	10/10/2004	152000 J	0.08 J	0.24 U	1.14 U	20.8 J			
		02/04/2005	116000 J	0.08 U	0.09 U	1.14 U	26.1 J			
12MWT26	Puz	09/26/2004	165000 J	0.043 U	0.06 U	1.14 U	12.1 J			
		02/17/2005	143000 J	0.06 U	0.33 U	1.14 U	8 J			
12MWT27	Puz	09/25/2004	53600 J	0.043 U	0.69 U	1.14 U	11.3 J			
		02/07/2005	39200 J	0.043 U	0.15 U	1.14 U	3.3 U			
12MWT33	Pmz	09/26/2004	40300 J	0.043 U	0.048 U	1.14 U	96 J			
		02/18/2005	32200 J	0.043 U	0.38 U	1.14 U	128 J			
SWMU 13 - Mine	Fill B									
13MWT01	Puz	04/26/2003	24300 J	0.11 U	0.1 U	0.08 U	29.7 J			
		11/23/2003	26100 J	0.08 U	0.1 U	0.06 U	29.9 J			
13MWT03	Puz	04/26/2003	37400 J	0.23 U	0.34 U	5.8 J	161 J			
		11/11/2003	40700 J	0.04 U	0.1 U	0.76 U	97.7 J			
13MWT28	Plz	12/07/2003	124000 J	0.06 U	0.63 U	12.5 J	6.7 J			
SWMU 16 - Cast I	High									
16MW02	Puz	04/24/2003	18000 J	0.1 U	0.06 U	0.3 U	50 J			
		05/11/2003	17900 J	0.11 U	0.07 U	0.35 U	42.9 J			
		10/25/2003	20200 J	0.08 U	0.1 U	0.09 U	15.8 J			
16MWT17	Puz	12/05/2003	61300 J	0.12 U	0.1 U	0.17 U	122 J			
SWMU 18 - Load	and Fill Area									
18AMWT001	Puz	01/20/2012	10100	1 U	NA	2.5 U	63.1			
18DMWT001	Puz	01/17/2012	34300	1 U	NA	2.5 U	2.16 J			
18GMWT004	Puz	01/19/2012	89300	2 U	NA	7.47 J	78.2 J			
18IMWT001	Puz	01/23/2012	50300	2 U	NA	17.9	85			
SWMU 22 - Lead	Azide Pond									
22MWT01	Puz	05/22/2012	NA	NA	NA	NA	NA			

NOTES

Results are for total metals (i.e., unfiltered samples) in micrograms per liter ($\mu g/L$).

NA = Parameter not analyzed.

- J Indicates that the parameter was detected but the concentration is considered an estimate due to imprecision.
- U Indicates that the parameter was not detected at the numerical detection limit.
- UJ Indicates that the parameter was not detected and the result is estimated.
- Plz Pennsylvanian (lower zone).
- Pmz Pennsylvanian (middle zone).
- Puz Pennsylvanian (upper zone).

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 4

Page 1 of 2

4.0 EVALUATION OF BACKGROUND CONCENTRATIONS

This section presents the results of the statistical evaluation performed to establish the background data

set for metals in groundwater within the Pennsylvanian bedrock at NSA Crane. It also discusses use of

the background data set in future investigations.

4.1 STATISTICAL EVALUATION SUMMARY

Table 4-1 presents the results of the statistical evaluation of metals in background groundwater at NSA

Crane. The calculated UTLs represent the background concentrations for groundwater within the

Pennsylvanian bedrock.

4.2 COMPARISON OF SITE TO BACKGROUND CONCENTRATIONS

For comparisons of site data to background data, either site-wide tests or individual comparison tests will

be used to compare site concentrations to background concentrations. Site-wide tests are used to

compare an average (for normal distributions)/median (for non-parametric distributions) site concentration

to an average/median background concentration. Individual comparison tests are used to compare

individual site concentrations to a representative background concentration. Site-wide comparisons are

generally the preferred method of comparison. If site-wide comparisons cannot be used, then the

alternative is to use individual comparison tests.

Site-wide comparison tests require that the site and background media data sets being compared meet

certain general assumptions. General requirements are that a specific minimum number of samples be

included in the site and background data sets so that there is sufficient confidence in the test conclusions.

A sample size calculation will be conducted prior to usage to ensure the desired level of confidence is

reached. The sample size determination will be in accordance with the project data quality objectives,

Navy guidance, or other appropriate methods. Enough site data are to be collected to evaluate the null

hypothesis that site conditions are not representative of background conditions against the alternative

hypothesis that site conditions are representative of background, with alpha and beta error levels of 0.05,

and a minimum detectable difference of two background standard deviations. If enough site data to meet

the criterion for site-wide comparisons cannot be obtained, the alternative is to perform a separate

comparison of each site sample to background using individual comparison tests.

U.S. EPA's ProUCL, Version 4.1.1, calculates multiple background values and accounts for non-detected

concentrations. One of the background threshold values calculated by ProUCL is a 95-percent UTL.

021304/P 4-1 CTO F279

NSA Crane

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 4

Page 2 of 2

UTLs were established for each metal based on the null hypothesis that individual site concentrations are within the background concentration range. For individual comparisons, concentrations of each metal from each site sample are compared to a UTL for that metal that represents a statistically derived upper limit on the average background concentration. Table 4-1 presents the 95-percent UTLs for groundwater from the Pennsylvanian aquifer at NSA Crane. (The data input for ProUCL used to calculate the UTLs is provided in Appendix E.)

TABLE 4-1

SUMMARY STATISTICS BASEWIDE PENNSYLVANIAN BEDROCK BACKGROUND GROUNDWATER EVALUATION NSA CRANE, INDIANA

PARAMETER ⁽¹⁾	FOD	RANGE OF DETECTION LIMITS	MINIMUM DETECTED CONCENTRATION	MAXIMUM DETECTED CONCENTRATION	MEAN ⁽³⁾	STANDARD DEVIATION ⁽³⁾	DATA DISTRIBUTION ⁽²⁾	UTL ^(4,5)
ALUMINUM	19/28	8.3 - 200	28.5	8,500	1192	2220	Log-Normal	6,183
ANTIMONY	1/28	0.02 - 4	2.9	2.9	NA ⁽⁵⁾	NA ⁽⁵⁾	Assumed Nonparametric	NA ⁽⁶⁾
ARSENIC	12/29	0.16 - 3.2	0.66	15.2	2	3.2	Assumed Nonparametric	9.1
BARIUM	27/29	12.8 - 15.6	13.2	97.5	41.3	24.9	Log-Normal	96.9
BERYLLIUM	6/28	0.02 - 1.8	0.1	3.01	0.40	0.70	Assumed Nonparametric	2.0 (7)
CADMIUM	3/29	0.039 - 1	0.08	0.9	0.14	0.19	Assumed Nonparametric	0.55 ⁽⁷⁾
CALCIUM	28/28	NA	7,190	216,000	39300	58500	Log-Normal	216,000
CHROMIUM	9/29	0.17 - 5	0.58	26.2	2.7	5.3	Assumed Nonparametric	14.6 ⁽⁷⁾
COBALT	21/28	1 - 3	2	64.4	21.7	19.5	Nonparametric	65.5
COPPER	17/28	0.12 - 2.1	0.67	21.6	3.4	5	Log-Normal	14.6
IRON	25/28	61.7 - 344	12.7	41,800	7070	12200	Log-Normal	34,500
LEAD	4/29	0.157 - 2.5	0.54	15.5	1.5	3.4	Assumed Nonparametric	9.0 ⁽⁷⁾
MAGNESIUM	28/28	NA	2,950	229,000	19400	53700	Log-Normal	229,000
MANGANESE	27/28	566 - 566	6.89	5940	1200	1460	Log-Normal	4,470
MERCURY	2/29	0.007 - 0.2	0.16	0.39	0.17	0.04	Assumed Nonparametric	NA ⁽⁶⁾
NICKEL	24/28	10 - 10	1.56	131	44.6	40.4	Log-Normal	135
POTASSIUM	22/28	3,390 - 5,000	403	5,380	2690	1670	Nonparametric	6,450
SELENIUM	7/29	0.04 - 2.5	0.33	4.1	0.70	0.91	Assumed Nonparametric	2.7 ⁽⁷⁾
SILVER	0/29	0.028 - 3	NA	NA	NA	NA	Assumed Nonparametric	NA ⁽⁶⁾
SODIUM	28/28	NA	10,100	165,000	45800	46900	Log-Normal	165,000
THALLIUM	1/28	0.04 - 5	0.08	0.08	NA ⁽⁵⁾	NA ⁽⁵⁾	Assumed Nonparametric	NA ⁽⁶⁾
TIN	0/24	0.048 - 190	NA	NA	NA	NA	Assumed Nonparametric	NA ⁽⁶⁾
VANADIUM	5/28	0.06 - 3	2.1	17.9	3.4	3.6	Assumed Nonparametric	11.4 ⁽⁷⁾
ZINC	23/28	1.1 - 10	2.16	161	41.2	44.2	Log-Normal	140

NOTES

- (1) Results for total metals (i.e., unfiltered samples)in micrograms per liter (µg/L).
- (2) Data distribution determined using Shaprio Wilk Test with a 5-percent significance level.
- (3) When non-detects are present the Kaplain-Meier mean and standard deviation are presented. The geometric mean is presented if the data are all detect and follow a log-normal distribution. 'Otherwise the arithmetic mean and standard deviation are presented.
- (4) UTLs are presented using three significant figures if the value is greater than 10; otherwise, two significant figures are presented.
- (5) UTLs were calculated using ProUCL, Version 4.1.1. For assumed nonparametric, the 95-percent KM UTL is presented.
- (6) There is two or less detected concentrations. Computing sumary statistics is not appropriate.
- (7) ProUCL warns that there may not be enough detected concentrations for the calculations to be reliable enough to draw conclusions.

Rationale for UTL Selected from ProUCL Output

If all data detected and data distribution are not Normal, use Nonparamtric 95-percent UTL with 95-percent Coverage.

If any data are non-detect, use 95-percent Kaplain Meier UTL with 95-percent Coverage.

FOD = Frequency of detection.

KM = Kaplan-Meier.

UTL = Upper tolerance limit.

NA = Not applicable.

NSA Crane

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013 Section: References

Page 1 of 4

REFERENCES

Barnhill, M.L., 1992. Subsurface Sedimentology of the Pennsylvanian (Mansfield) Rocks, Naval Surface

Warfare Center, Crane Indiana, (Rockeye, Dye Burial Ground and Demolition). Indiana Geological Survey,

Open File Report 92-15.

Barnhill, M.L. and P.L. Hansley, 1993. Sedimentology and Reservoir Characteristics of the

Pennsylvanian Aquifer Bodies at the McComish Gorge, Old Burn Pit, Pest Control Site, and Mustard Gas

Burial Grounds: A Preliminary Investigation, Naval Surface Warfare Center, Crane Indiana. Indiana

Geological Survey, Open File Report 93-8.

Blunck, D.R. 1995. Earth Resources Geographic Information System (GIS) for NSWC-Crane, Indiana

Geological Survey and Indiana University, Final Report.

B&R Environmental (Brown & Root Environmental), 1997. Current Contamination Conditions Risk

Assessment. SWMU #03/10 (Ammunition Burning Ground), SWMU #07/09 (Old Rifle Range), SWMU

#06/09 (Demolition Range). November.

DoD (Department of Defense), 2009. Department of Defense Quality Systems Manual for Environmental

Laboratories. Version 4.1. April.

Fisher, A.T., 1996. The Hydrogeologic Properties and Sedimentary Facies Relations of Shallow

Pennsylvanian Bedrock Aquifers: Well tests, Lithologic Descriptions, and Gamma-ray Logs, NSWC

Crane, Indiana Geological Survey and Indiana University, Open File Report 96-3.

Fisher, A.T., 1996. The Hydrogeologic Properties and Sedimentary Facies Relations of Shallow

Pennsylvanian Bedrock Aquifers: Well tests, Lithologic Descriptions, and Gamma-ray Logs, NSWC

Crane, Indiana Geological Survey and Indiana University, Open File Report 96-3.

Fisher, A.T., M.L. Barnhill, and J. Revenaugh, 1998. The Relationship Between Hydrogeologic Properties

and Sedimentary Facies: An Example from Pennsylvanian Bedrock Aguifers, Southwestern Indiana.

Ground Water. Vol. 36, No. 6. November-December.

021304/P R-1 CTO F279

NSA Crane

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: References Page 2 of 4

IGS (Indiana Geological Survey), 1989. Assessment of Lead, Arsenic, and Other Trace Elements In the

Ground Water From Bedrock Aquifers In Southern Indiana. Department of Natural Resources.

November 13.

Kvale, E.P., 1992. Report on the Surface Geological Mapping of Crane Naval Surface Warfare Center,

Crane Indiana. Indiana Geological Survey, Open File Report 92-10.

Kvale, E.P., 1994. Bedrock Facies Controls On Potential Constituent Migration-Pathwyas and Barriers,

Landfill and Application Sites, Naval Surface Warfare Control, Crane, Indiana. Indiana Geological

Survey, Open File Report No. 95-1. December.

Murphy, W.L., and R. Wade, 1995. Draft Report, RCRA Facility Investigation, Phase II Groundwater

Release Assessment, SWMU 06/09 Demolition Area and Phase III Release Characterization, SWMU

07/09 Old Rifle Range, Naval Surface Warfare Center, Crane, Indiana. U.S. Army Corps of Engineers,

Waterways Experiment Station, Vicksburg, MS.

Murphy, W.L., and R. Wade, 1998. Final Report, RCRA Facility Investigation, Phase II Groundwater

Release Assessment, SWMU 06/09 Demolition Area and Phase III Release Characterization, SWMU

07/09 Old Rifle Range, Naval Surface Warfare Center, Crane, Indiana. U.S. Army Corps of Engineers,

Waterways Experiment Station, Vicksburg, MS.

NEESA (Naval Energy and Environmental Support Activity), 1983. Initial Assessment Study of Naval

Weapons Support Center, Crane, Indiana. NEESA 13-003. May.

NFESC (Naval Facilities Engineering Services Command), 1999. Navy Installation Restoration Chemical

Data Quality Manual (IRCDQM). September.

Nohrstedt, J.S., E.M. Farr, R.W. Magee, P.E. Albertson, and J.H. May. September 1998. RCRA Facility

Investigation Phase II Soils Release Characterization, SWMU 04/02, McComish Gorge, NSWC Crane,

Technical Report GL98-21, Final Report, U.S. Army Corps of Engineers, Waterways Experimental

Station.

Palmer, A.N., 1969. A Hydrologic Study of Indiana Karst, Ph.D. Thesis, Indiana University, Indiana.

Shaver, R.H., C.H. Ault, A.M. Burger, D.D. Carr, J.B. Droste, D.L. Eggert, H.H. Gray, D. Harper, N.R.

Hasenmueller, W.A. Hasenmueller, A.S. Horowitz, H.C. Hutchison, B.D. Keith, S.J. Keller, J.B. Patton,

021304/P R-2 CTO F279

Revision: 0

Date: September 2013 Section: References

Page 3 of 4

C.B. Rexroad, C.E. Wier, 1986. Compendium of Paleozoic Rock-unit Stratigraphy in Indiana—A

Revision: Indiana Geological Survey Bulletin 59.

Tetra Tech, Inc., 2013. Draft Supplemental Resource Conservation and Recovery Act Facility

Investigation Addendum Report for Solid Waste Management Unit 9 South (Pesticide Control Area / R-

150 Tank Area), Naval Support Activity Crane, Crane, Indiana. January.

Tetra Tech NUS, Inc., 2001. Basewide Background Soil Investigation Report, Naval Surface Warfare

Center Crane, Crane, Indiana. January.

Tetra Tech NUS, Inc., 2004. Resource Conservation and Recovery Act Facility Investigation Report for

SWMU 01 - Mustard Burial Ground, Naval Surface Warfare Center, Crane Division, Crane, Indiana.

October.

Tetra Tech NUS, Inc. 2005a. Resource Conservation and Recovery Act Facility Investigation Report for

SWMUs 4 (Mccomish Gorge), 5 (Old Burn Pit), 9 (Pesticide Control/R-150 Tank Area), and 10 (Rockeye),

Naval Surface Warfare Center, Crane Division, Crane, Indiana. July.

Tetra Tech NUS, Inc. 2005b. Monitored Natural Attenuation Report for Cast High Explosives Fill/Building

146 (SWMU 16), Round No. 4, Naval Surface Warfare Center, Crane, Crane, Indiana. November.

Tetra Tech NUS, Inc., 2007. Resource Conservation and Recovery Act Facility Investigation Report for

Mine Fill B (SWMU 13) Naval Surface Warfare Center, Crane, Crane, Indiana. April.

Tetra Tech NUS, Inc. 2008. Resource Conservation and Recovery Act Facility Investigation Report for

Building 106 Pond (SWMU 8), Naval Surface Warfare Center, Crane Division, Crane, Indiana. January.

Tetra Tech NUS, Inc. 2010a. Corrective Measures Proposal Report For SWMU 12 - Mine Fill A, Naval

Surface Warfare Center, Crane, Crane, Indiana. July.

Tetra Tech NUS, Inc. 2010b. Corrective Measures Proposal Report For SWMU 13 - Mine Fill B, Naval

Surface Warfare Center, Crane, Crane, Indiana. July.

Tetra Tech NUS, Inc. 2010c. Draft Resource Conservation and Recovery Act Corrective Measures

Proposal Report for SWMU 16 - Cast High Explosives Fill/B146 Incinerator Naval Surface Warfare

Center Crane, Crane Division Crane, Indiana. April.

021304/P R-3 CTO F279

Revision: 0

Date: September 2013 Section: References

Page 4 of 4

Tetra Tech NUS, Inc. 2010d. Monitored Natural Attenuation, Final Report for Mine Fill B (SWMU 13),

Round No. 9, Naval Surface Warfare Center, Crane, Crane, Indiana. July.

Tetra Tech NUS, Inc., 2011a. Draft Resource Conservation and Recovery Act Facility Investigation

Report for Mine Fill A (SWMU 12) Naval Surface Warfare Center, Crane, Crane, Indiana. June.

Tetra Tech NUS, Inc., 2011b. Monitored Natural Attenuation Report for Mine Fill A (SWMU 12), Round

No. 8, Naval Support Activity Crane, Crane, Indiana. March.

Tetra Tech NUS, Inc., 2011c. Monitored Natural Attenuation Report for Mine Fill B (SWMU 13), Round

No. 10, Naval Support Activity Crane, Crane, Indiana. March.

Tetra Tech NUS, Inc., 2011d. Resource Conservation and Recovery Act Facility Investigation Report for

Cast High Explosives Fill/B146 Incinerator (SWMU 16), Naval Surface Warfare Center, Crane, Crane,

Indiana, March.

U.S. EPA (United States Environmental Protection Agency), 1989a. RCRA Facility Investigation (RFI)

Guidance – Volume 1. Interim Final. EPA/540/SW-89-031. May 1989.

U.S. EPA, 1989b. Risk Assessment Guidance for Superfund - Volume 1, Human Health Evaluation

Manual (Part A) [HHEM]. Interim Final. EPA/540/1-89-002. Office of Emergency and Remedial

Response. December 1989.

U.S. EPA, 1993. Region 5 Standard Operating Procedure for Validation of CLP Inorganic Data. U.S.

EPA Region 5 Environmental Sciences Division, Central Regional Laboratory, Chicago, IL. September.

U.S. EPA, 2004. Contract Laboratory Program National Functional Guidelines for Inorganic Data Review.

Office of Superfund Remediation and Technology Innovation (OSRTI). OSWER 9240.1-45. EPA 540-R-

04-004. October.

U.S. Army (Army), 1978. Installation Assessment of the NSWC Crane, Record of Evaluation Report No.

117. Aberdeen Proving Ground, Maryland, March.

021304/P R-4 CTO F279

APPENDIX A

1989 INDIANA GEOLOGICAL SURVEY STUDY INFORMATION

APPENDIX A-1

PAGES FROM APPENDIX A FROM 1989 INDIANA GEOLOGICAL SURVEY STUDY (HIGHLIGHTING ADDED; INDICATES PENNSYLVANIAN-AGE BEDROCK WELL)

Appendix A:

Well ID	Date	Temp Thrmometr	DO	TEMP Thrmistr	SpC	рĦ	Bh Zobell	Eh Sample	Alkalinity	HC03-	C03=
	UNITS: DET LIM:	°C	mg/L .1	°C	1 μmho (25 °C)		Væ	₽V	eq CaCO3	ppn	ppm
	PRECISION:	±0.1	±.1	±0.1		±.01	±1	±1	±Ø.1%		
105	Ø8-Aug-88	15.0	Ø.58	15.5	910	8.37	152	90	5Ø9	573	24
106	Ø8-Aug-88		0.50			8.89	148	-31		1440	14
107	Ø8-Aug-88		0.59		532	8.10	144	-135		362	Ø
108	Ø9-Aug-88		1.18	16.0	1174	8.93	153	133	657	764	18
109	09-Aug-88	14.9	0.63	15.4	726	7.88	150	-188	407	497	Ø
110	09-Aug-88	15.4	Ø.86	15.9	491	8.04	141	-182	267	326	Ø
111	Ø9-Aug-88	16.0	7.90	16.5	266	6.65	145	191	23	29	Ø
112	Ø9-Aug-88	17.6	2.50	18.4	561	7.80	143	88	3Ø2	369	Ø
113	09-Aug-88	14.9	0.61	15.4	482	8.24	140	-258	269	325	1
114	10-Aug-88	15.5	Ø.42	16.0	601	8.02	156	-168	312	369	6
115	10-Aug-88		0.49	16.1	2401	8.39	155	-36		1600	12
116	10-Aug-88		Ø.52		1501	9.18	151	-154		798	32
117	10-Aug-88		0.49		495	7.55	146	-283		329	Ø
118	10-Aug-88		0.65		562	8.50	138	128		380	4
119	10-Aug-88		3.81		443	6.67	137	275		156	Ø
120	11-Aug-88		0.43		837	8.64	153	-233		575	8
121	11-Aug-88		0.87		1066	9.18	148	72		660	26
122	11-Aug-88		4.4			7.26		-110		357	Ø
123	11-Aug-88		0.74			8.23		156		391	4
124	14-Aug-88		0.49		339	6.99	150	-146		232	Ø
125	14-Aug-88		Ø.44		725	8.33	143	-252		493	Ø
126	15-Aug-88		0.11		1268	9.17	153	-328		739	27
127	15-Aug-88		Ø.59		640	6.43	144	-71		169	Ø
128	15-Aug-88		0.45		395	7.51	132	-146		256	Ø
129	15-Aug-88		Ø.61			7.30		-89		371	Ø
130	15-Aug-88		0.4		652	7.44	128	106		459	Ø
131	16-Aug-88		6.85		169	6.08	146	211	74	11	Ø
132	16-Aug-88		9.47	18.4	1229	9.29	134	75	609	618	61
133	16-Aug-88					9.33			692	833	6
134	16-Aug-88		0.49		733	8.42	127	78		571	Ø
135	16-Aug-88		Ø.39		605	7.34	122	-190		397	7
136 137	16-Aug-88		Ø.39		776 48Ø	8.39 7.24	126 168	126 -31		524 333	0
138	17-Aug-88 17-Aug-88		Ø.42		500	7.48	154	-128		321	Ø Ø
139	17-Aug-88		Ø.51		482	7.36	158	-167		265	Ø
140	17-Aug-88	15.0	3.82	15.5	492	7.14	145	237	228	278	Ø
141	17-Aug-88	16.2	0.4	16.7	935	9.00	145	-75	519	593	20
142	13-Sep-88	14.9	Ø.49	15.3	150	6.34	183	-10	82	100	Ø
143	13-Sep-88	14.8	0.50	15.2	409	6.94	174	-120	223	272	ø
144	13-Sep-88	16.4	6.90	16.8	300	5.80	172	273	48	59	Ø
145	13-Sep-88	16.2	0.30	16.6	1202	7.41	170	-207	389	475	ø
146	13-Sep-88	15.3	0.31	15.7	905	7.14	170	-90	298	363	ø
147	13-Sep-88	15.4	Ø.28	15.7	1004	7.19	173	-189	261	319	ø
148	13-Sep-88	15.6	Ø.21	15.3	750	8.13	174	-154	416	506	1
149	14-Sep-88	15.7	Ø.32	16.2	366Ø	8.60	183	33	1057	1251	19
150	14-Sep-88	16.4	0.17	17.0	1501	8.63	175	-223	470	559	7
151	14-Sep-88	15.6	0.30	15.9	713	8.40	172	-282	409	484	7

Appendix A:

Water Chemistry in Region 3 (Odon-Elnora Area)

Well ID	Date	Temp Thrmometr	DO	TEMP Thrmistr	SpC	pH	Eh Zobell	Eh Sample	Alkalinity	HC03-	CO3=
	UNITS: DET LIM:	•C	mg/L .1	°C	1 μmho (25 °C)		₽Ā	ъV	eq CaCO3	ppm	рр∎
	PRECISION:	±Ø.1	±.1	±0.1		±.Ø1	±1	±1	±0.1%		
152	14-Sep-88	15.6	Ø.29	16.0	563	7.10	174	-158	312	381	Ø
153	14-Sep-88	14.6	Ø.53	15.0	515	7.38	174	-148	225	275	Ø
154	14-Sep-88	15.6	0.17	15.9	547	7.03	174	-147	300	366	Ø
155	14-Sep-88	15.6	0.40	15.9	2248	8.12	176	-260		762	Ø
156	18-Sep-88	16.2	8.21	16.6	568	6.91	186	249		344	Ø
157	18-Sep-88	14.8	0.28	15.1	623	7.34	184	-152	343	419	Ø
158	2Ø-Sep-88	15.6	0.51	16.0	480	6.96	183	-78	265	323	Ø
159	2Ø-Sep-88	15.8	0.42	16.1	507	7.14	174	-83	275	335	Ø
160	20-Sep-88	16.3	3.08	16.6	608	7.67	172	152	335	409	0
161	2Ø-Sep-88	14.9	0.62	15.2	439	6.88	172	141	245	299	Ø
162	20-Sep-88	15.4	0.22	15.8	425	6.97	176	-115	238	290	Ø
163	21-Sep-88	14.9	Ø.19	15.2	407	7.14	191	-126	249	293	Ø
164	21-Sep-88	16.6	0.2	16.9	894	7.67	187	-208	392	479	Ø
165	21-Sep-88	16.3	0.19	16.5	458	7.14	187	-141	213	260	Ø
166	21-Sep-88	14.6	0.21	14.9	1090	7.58	179	-85	427	521	Ø
167	21-Sep-88	14.8	2.86		422	6.62	178	216	162	198	Ø
168	21-Sep-88	15.0	8.11		3Ø7	5.99	176	254	49	6Ø	Ø
	HEAN	15.7	1.34	16.2	797	7.67	158	-47	370	440	5
	STD DEV	0.6	2.08	Ø.7	614	Ø.86	19	162	242	285	11
	MAX	17.8	8.21	18.4	366Ø	9.33	191	275	1331	1600	61
	MIN	14.6	0.11	14.9	150	5.80	122	-328	23	11	Ø

ID	Cl-	NO3-	S04-	F -	Ca	Mg	K	Na	Fe	Zn	Pb	Sr	Ba
	pp∎ 1	рр в 1	рр в 1	рр в .1	рр њ .Ø2	рр в .02	рр в .03	рр в .09	ppb 3	ppb 2	ppb 2	рр в .06	рр в .04
105	5	3	<1	2.7	0.964	Ø.282	5.208	275.3	15	5	5	0.018	0.057
106	25	4	<1	7.6	1.911	1.012	12.43	688.2	26	51	8	0.185	Ø.121
107	1	(1	12	0.7	10.37	3.038	6.319	116.8	35	<2	3	0.165	0.110
1 08 1 0 9	13	18	∢1 ∢1	5.5 2.3	3.051 6.697	1.353 3.718	2.902 4.510	331.6 187.2	<3 434	1 0 363	(2 4	0.035 0.144	0.038 0.428
110	2	<1	8	0.1	7.887	1.880	3.147	104.8	284	⟨2	2	0.071	Ø. 156
111	64	76	6	Ø.1	17.42	7.539	1.433	38.11	37	3Ø	6	0.030	0.060
112	5	1	15	Ø.2	73.65	19.63	0.419	5.231	21	5	3	0.078	0.034
113	2	<1	<1	1.3	8.898	2.364	1.713	102.5	243	89	3	0.040	0.084
114	2	<1	20	0.8	13.05	3.091	2.972	126.9	95	25	2	Ø.119	0.080
115	59	<1	<1	4.8	2.373	Ø.889	5.524	574.3	29	<2	<2	0.139	0.195
116	25	<1	<1	6.0	1.393	0.411	3.042	398.2	16	<2	<2	Ø.Ø36	0.055
117	2	37	<1	0.5	42.55	13.63	1.748	37.93	1315	108	⟨2	Ø.218	Ø.159
118	2	<1	10	1.2	5.337	1.351	2.517	137.6	14	52	2	0.064	Ø.138
119	20	41	35	0.2	48.30	1.304	1.224	18.44	7	9	<2	0.084	0.033
12 0 121	9 12	<1 <1	5 4	1.7 3.1	3.923 Ø.269	1.298 Ø.107	2.902 2.238	246.6 340.0	35 ∢3	<2 3Ø	<2 <2	Ø.Ø83 Ø.Ø15	Ø.145 Ø.019
122	6	(1)	3	Ø.8	39.53	19.17	3.497	40.26	183	244	<2	Ø.406	Ø.613
123	6	<1	13	Ø.5	12.77	4.595	2.273	129.7	4	69	<2	0.081	Ø.149
124	2	<1	<1	Ø.6	13.84	5.792	2.797	46.51	2543	415	⟨2	0.106	0.210
125	4	<1	<1	1.6	6.352	2.242	2.587	176.2	36	75	<2	0.075	0.069
126	44	<1	<1	3.2	0.773	0.227	2.727	388.9	8Ø	<2	3	0.028	0.052
127	6	<1	177	0.1	59.69	15.05	3.147	37.73	2884	53	6	0.150	0.019
128	1	<1	2	Ø.8	8.513	4.451	2.657	59.82	40	<2	<2	0.137	0.100
129	1	(1)	<1	0.9	37.30	22.01	3.951	34.61	82	17	2	0.488	0.713
130	21	<1	<1	1.0	7.420	2.517	3.636	170.6	13	199	<2	0.080	0.106
131	38	36	<1 <1	Ø.1 2.5	21.73 1.071	9.998	1.223 2.552	22.17 358.3	8	31	<2 ~ <2	Ø.Ø36 Ø.Ø31	0.049 0.034
132 133	34 9	<1 <1	<1	3.6	0.774	Ø.477 Ø.286	2.552	36Ø.9	9 2 4	3 <2	<2	0.031	Ø.028
134	29	(1)	(1)	1.5	4.696	1.319	3.811	236.0	21	18	5	0.110	0.067
135	2	<1	<1	Ø.9	60.91	26.91	2.483	19.92	381	<2	<2	0.609	Ø.812
136	3	<1	2	1.6	3.754	2.692	2.797	189.2	<3	63	<2	0.090	0.076
137	1	<1	<1	0.5	54.51	17.03	1.532	14.81	102	24	2	0.291	Ø.844
138	1	<1	<1	0.2	53.83	18.74	0.847	9.751	270	158	(2)	0.170	0.259
139	1	<1	<1	$\emptyset.3$	53.71	18.14	1.452	10.83	1661	423	<2	Ø.251	0.403
140	5	12	32	0.7	65.05	21.67	1.230	1.724	<3	7	<2	Ø.855	0.092
141	3	<1	<1	2.4	1.103	0.357	2.822	250.2	34	16	<2	0.027	0.032
142	2	<1	2	0.1	12.58	5.683	0.870	13.70	2740	11	<2	0.065	Ø.Ø73 Ø.519
143	9 15	<1 68	32 5ø	Ø.2 <Ø.1	59.Ø8 28.ØØ	21.92 12.61	Ø.62Ø 1.351	9.637 32.22	3445 49	6 13	<2 <2	Ø.458 Ø.046	0.313 0.654
144 145	215	<1	37	Ø.6	57.64	20.46	3.736	285.4	4156	230	⟨2	Ø.516	0.591
146	86	⟨1	6	Ø.4	56.35	23.82	3.625	96.15	424	<2	⟨2	Ø.158	Ø.178
147	210	<1	60	0.4	71.06	35.43	4.875	183.9	6456	645	⟨2	0.281	0.331
148	26	<1	11	Ø.9	8.129	3.025	3.226	189.4	128	16	<2	0.111	0.137
149	484	<1	98	7.3	4.054	3.551	5.457	791.9	41	22	<2	0.075	0.087
150	184	<1	5	1.3	20.96	9.158	3.123	344.0	43	66	6	0.448	0.518
151	19	<1	2	1.2	12.54	6.162	2.058	178.1	199	9	<2	Ø.169	0.194

Appendix A:

Water Chemistry in Region 3 (Odon-Elnora Area)

Well													
ID	C1-	N03-	S04-	F -	Ca	Ng	K	Na	Fe	Zn	Pb	Sr	Ba
	ppm 1	ррв 1	рр в 1	ppm .1	PP m .Ø2	рр в .02	рр њ .03	рр в . Ø9	ppb 3	ppb 2	ppb 2	ppm .Ø6	pp∎ .04
152	2	<1	<1	0.3	51.51	19.97	1.933	41.69	1746	329	⟨2	Ø.183	Ø.212
153	2	<1	6	Ø.6	54.34	22.24	1.862	39.81	1009	9	7	0.168	Ø.173
154	11	<1	<1	0.4	41.41	11.95	2.289	41.70	2031	160	<2	0.159	0.166
155	318	<1	18	2.8	38.59	15.46	3.346	562.5	676	16	<2	0.251	0.261
156	12	31	27	0.2	89.05	31.49	1.212	4.474	15	3	<2	0.454	0.025
157	6	<1	<1	1.3	29.03	14.64	3.168	97.08	471	<2	<2	0.836	0.979
158	2	<1	2	0.7	39.44	21.91	3.067	25.07	430	27	<2	0.513	0.255
159	1	<1	<1	0.7	49.49	0.729	2.663	24.14	272	<2	<2	Ø.676	0.462
160	2	<1	3	1.6	12.57	8.323	3.823	118.8	32	193	<2	0.297	Ø.148
161	1	<1	7	0.5	54.36	24.81	1.586	9.906	33	289	<2	0.316	0.372
162	1	<1	4	0.4	49.36	22.57	1.308	10.00	88Ø	23	<2	0.224	0.349
163	1	<1	<1	Ø.4	43.99	17.30	1.509	31.13	1170	595	<2	0.209	0.641
164	60	<1	<1	2.4	28.47	12.11	3.644	175.8	1160	346	<2	0.636	0.570
165	10	<1	26	0.1	57.60	22.89	1.154	2.739	5278	231	<2	Ø.139	0.052
166	106	<1	21	2.1	30.86	9.834	2.812	247.7	158	4	3	0.260	0.486
167	10	35	12	0.3	45.73	16.96	0.889	11.31	7	91	<2	0.157	0.037
168	11	65	32	0.1	27.99	10.38	Ø.928	5.928	14	77	<2	0.070	0.021
	36	7	13	1.4	28.59	10.66	2.765	154.1	688	94	<2	0.210	0.227
	81	17	27	1.7	23.73	9.291	1.754	174.3	13Ø3	146	2	0.200	0.232
	484	76	177	7.6	89.05	35.43	12.43	791.9	6456	645	8	Ø.855	0.979
	1	<1	<1	<0.1	Ø.269	0.107	0.419	1.724	<3	<2	<2	0.015	0.019

					1				
В	n	n	Δ	m	А	1	v	1	•

Well ID	Nn	Cr	Cđ	As	Hg	Ag	Se	ANION SUH	CATION SUM	EPM Balance	TDS	HARDNESS	TDS/SpC RATIO
	рр b 3	ppb 2	ppb 2	ppb 2	ррb Ø.5	ppb 1	ppb 2	meq/L	∎eq/L	x	ppm	ppm	
								±1%	±1%				
105	3	<2	₹2	<2	<.5	<1	<2	10.5	12.2	7.4	889	4	1.0
106	6	<2	⟨2	<2	<.5	(1	<2	25.2	30.4	9.3	2194	9	Ø.8
107	6	<2	₹2	⟨2	<.5	<1	<2	6.3	6.0	-1.9	513	38	1.0
1 Ø8 1 Ø 9	6 24	<2 <2	⟨2 ⟨2	₹2	₹.5	(1)	<2 <2	13.8 8.7	14.8 8.9	3.4 1.7	1140 724	13 32	1.0
110	15	<2	<2	⟨2	₹.5	$\frac{1}{1}$	<2	5.6	5.2	-3.3	454	32 27	Ø.9
111	7	<2	<2	2	₹.5	<1	⟨2	3.6	3.2	-6.7	242	74	Ø.9
112	47	<2	<2	2	₹.5	(1	<2	6.5	5.5	-8.3	492	265	Ø.9
113	22	(2	⟨2	2	₹.5	<1	<2	5.5	5.2	-3.1	447	32	Ø.9
114	21	<2	<2	<2	(.5)	(1)	<2	6.8	6.5	-1.8	544		Ø.9
115	7	<2	<2	<2	<.5	<1	<2	28.5	25.3	-5.9	2259	10	Ø.9
116	7	<2	<2	<2	<.5	<1	<2	15.2	17.5	7.1	1264	5	Ø.8
117	47	<2	<2	21	₹.5	<1	<2	6.1	5.0	-9.5	487	162	1.0
118	26	<2	<2	<2	<.5	<1	<2	6.7	6.4	-2.1	545	19	1.0
119	22	<2	<2	2	₹.5	<1	<2	4.5	3.4	-14.8	324	126	0.7
120	10	<2	(2	<2	<.5	(1	<2	10.1	11.1	4.6	854	15	1.0
121 122	10 63	<2 <2	<2 4	<2 <2	<.5 <.5	<1 <1	<2 <2	12.3 6.1	14.9	9.5 -6.1	1049 471	1 177	1.0
123	26	(2)	4	(2)	₹.5	(1)	<2	7.0	6.7	-2.0	564		Ø.9
124	114	<2	<2	<2	₹.5	(1	<2	3.9	3.4	-6.4	307	58	Ø.9
125	62	⟨2	<2	<2	₹.5	(1	⟨2	8.3	8.2	-Ø.3	687	25	Ø.9
126	26	<2	(2	<2	₹.5	<1	<2	14.4	17.1	8.3	1206	3	1.0
127	395	⟨2	<2	<2	₹.5	⟨1	⟨2	6.6	6.1	-4.1	471	211	Ø.7
128	44	<2	<2	25	<.5	<1	<2	4.3	3.5	-10.9	361	40	Ø.9
129	47	<2	<2	₹2	₹.5	(1)	<2	6.2	5.3	-7.4	472	183	0.9
130	37	<2	<2	<2	<.5	<1	<2	8.2	8.1	-Ø.5	666	29	1.0
131	3	<2	<2	4	<.5	<1	<2	3.1	2.9	-3.9	183	95	1.1
132	3	3	<2	⟨2	<.5	<1	<2	13.3	15.7	8.5	1079	5	0.9
133	7	5	<2	<2	<.5	<1	<2	14.3	15.8	5.1	1216	3	1.0
134	9	3	(2)	<2	(.5)	(1)	(2)	10.3	10.7	2.2	848		1.2 Ø.9
135 136	20 (3	3	⟨2 ⟨2	5 (2	<.5 <.5	<u>(1)</u>	<2 <2	6.8 8.8	6.2 8.7	-4.7 -Ø.4	524 729		Ø.9
137	⟨3	2	<2	<2	₹.5	(1)	(2)	5.5	4.8	-6.6	424		Ø.9
138	<3	2	<2	2	₹.5	(1)	<2	5.3	4.7	-6.Ø	408		Ø.8
139	(3)	3	<2	2	(.5	<1	<2	4.4	4.8	4.5	355		Ø.7
140	⟨3	4	₹2	<2	₹.5	<1	<2	5.6	5.2	-4.3	419	251	Ø.9
141	<3	5	<2	2	<.5	<1	<2	10.6	11.0	2.0	875	4	Ø.9
142	170	<2	<2	5	<.5	<1	<2	1.8	1.9	3.3	145	55	1.0
143	205	<2	<2	12	<.5	<1	<2	5.4	5.4	0.1	421	238	1.0
144	5	<2	<2	5	₹.5	₹1	₹2	3.5	3.9	4.4	272	122	Ø.9
145	62	₹2	⟨2	4	⟨.5	<1	⟨2	14.7	17.3	8.3	1105	228	Ø.9
146	78	<2	<2	2	⟨.5	<1	<2	8.5	9.1	3.1	638	239	Ø.7
147	100	<2	(2	5	⟨.5	<1	<2	12.4	15.0	9.3	897	323	Ø.9
148 149	3 3	4	<2 2	<2 3	<.5 <.5	$\frac{\langle 1 \rangle}{\langle 1 \rangle}$	<2 23	9.3 37.2	9.Ø 35.1	-1.9 -3.0	749 2691	33 25	1.0 0.7
150	11	3	2	5	₹.5	(1	<2	14.8	16.9	6.6	1140	9Ø	Ø.1 Ø.7
151	9	<2	⟨2	4	Ø.5	<1	<2	8.8	9.0	Ø.8	717	57	1.0
• • •		.5.	•	•	2.0	•		•	3037	•		•	

Appendix A:

Water Chemistry in Region 3 (Odon-Elnora Area)

Well ID	Mn	Cr	Cd	As	Hg	Ag	Se	ANION SUM	CATION SUM	EPM Balance	TDS	HARDNESS	TDS/SpC RATIO
	ppb 3	ppb 2	ppb 2	ppb 2	ррb Ø.5	ppb 1	ppb 2	meq/L	meq/L	*	ppm	рр∎	
								±1%	±1%				
152	48	⟨2	⟨2	4	<.5	<1	⟨2	6.3	6.2	-1.0	505	211	Ø.9
153	63	<2	<2	7	₹.5	<1	<2	4.7	6.4	15.0	410	227	Ø.8
154	76	<2	₹2	<2	₹.5	<1	∢2	6.3	5.0	-11.3	477	153	0.9
155	47	<2	<2	4	<.5	<1	<2	22.0	27.8	11.7	1726	160	Ø.8
156	21	<2	<2	<2	₹.5	<1	<2	7.0	7.3	1.7	540	352	1.0
157	72	<2	<2	30	₹.5	<1	<2	7.1	7.0	-0.6	602	133	1.0
158	96	<2	<2	<2	<.5	<1	<2	5.4	5.0	-4.4	419	188	0.9
159	115	<2	<2	<2	<.5	<1	<2	5.6	3.7	-20.2	415	127	Ø.8
160	26	<2	(2)	<2	(.5)	<1	<2	6.9	6.6	-2.3	559	66	0.9
161	141	<2	<2	<2	<.5	<1	<2	5.1	5.3	1.5	399	238	Ø.9
162	257	<2	<2	<2	<.5	<1	<2	4.9	4.9	-0.4	381	216	Ø.9
163	69	<2	<2	<2	<.5	<1	<2	4.9	5.1	2.5	391		
164	27	<2	<2	8	<.5	<1	<2	9.7	10.3	2.9	772	121	Ø.9
165	231	<2	<2	3	<.5	<1	<2	5.1	5.2	1.0	390	238	0.9
166	25	<2	<2	2	<.5	<1	<2	12.1	13.2	4.6	943	117	Ø.9
167	4	<2	2	<2	<.5	<1	<2	4.3	4.2	-1.6	330	184	0.8
168	4	₹2	<2	<2	<.5	<1	<2	3.0		-8.3	213	113	0.7
	49	<2	⟨2	3	<.5	MA	<2	8.8	9.1	-0.4	702	115	
	71	1	1	6	Ø	NA	3	6.1	6.8	6.5	485	95	
	395	5	4	3Ø	. 1	NA	23	37.2	35.1	15.₽	2691	352	
	<3	<2	<2	Ø	<.5	NA	<2	1.8	1.9	-20.2	145	1	

Appendix a:

Water Chemistry in Region 3 (Linton Area)

Well ID	Date	Temp Thrmometr	DO	TEMP Throistr	SpC	pН	Eh Zobell	Eh Sample	Alkalinity	HC03-	C03=
	ONITS: DET LIN:	°C	mg/L .1	°C	1 μmho (25 °C)	,	æΫ	a V	eq CaCO3	ррв	ppm
	PRECISION:	±Ø.1	±.1	±Ø.1		±.Ø1	±1	±1	±0.1%		
169 170 171 172 173 174	26-Sep-88 26-Sep-88 26-Sep-88 26-Sep-88 26-Sep-88 26-Sep-88	15.3 15.4 15.9 15.6	Ø.22 Ø.19 Ø.32 Ø.50 Ø.20 Ø.39	15.6 15.8 16.3 16.0	3418 3112 1387 706 820 5915	8.12 8.34 7.92 7.22 8.37 7.96	183 180 176 177 179 179	-178 120 -171 132 -116 -159	1047 317 391 471	1370 1251 387 477 560 1686	15 13 0 0
HEAN STD DEV MAX BIN		15.5 0.3 15.9 15.0	1.42 2.73 8.11 Ø.19	15.9 Ø.3 16.3 15.4	2238 187Ø 5915 3Ø7	7.70 0.78 8.37 5.99	179 2 183 176	-17 166 254 -178	686 463 1382 49	827 559 1686 6Ø	5 6 15 Ø

Appendix a:

Water Chemistry in Region 3 (Linton Area)

Well ID	C1-	NO3-	S04-	P-	Ca	Ng	K	Na	Fe	Zn	Pb	Sr	Ba
	рр в 1	ррв 1	рр в 1	ppm .1	рр в .Ø2	рр њ .Ø2	рр в .Ø3	рр в .09	ppb 3	ppb 2	ppb 2	рр в .Ø6	рр в .04
169	545	<u>3</u>	<u>~1</u>	7.6	8.016	3.380	6.356	259.9	131	130	6	1,293	0.644
170	508	<1	5	6.3	5.591	2.926	5.844	900.7	32	24	6	0.850	Ø.495
171	3	<1	401	0.3	25.99	19.27	4.414	326.9	368	8	11	0.997	0.043
172	3	2	20	0.3	44.30	18.75	9.161	101.6	61	20	<2	1.822	1.439
173	4	<1	1	Ø.5	2.063	0.649	1.443	216.2	112	16	<2	0.034	0.099
174	1293	5	<1	4.4	16.60	6.348	9.197	2187	162	235	5	2.407	4.295
MEAN	338	11	66	2.8	18.65	8.815	5.335	571.2	126	73	4	1.068	1.005
STD DEV	451	22	137	3.0	13.95	7.045	3.077	711.3	111	78	4	0.804	1.420
MAX	1293	65	401	7.6	44.30	19.27	9.197	2187	368	235	11	2.407	4.295
MIN	3	<1	<1	0.1	2.063	0.649	Ø.928	5.928	14	8	Ø	0.034	0.021

Appendix a:

Water Chemistry in Region 3 (Linton Area)

Well ID	Mn	Cr	Cd	Ås	Hg	Åg	Se	ANION SUN	CATION SUM	BPH Balance	TDS	HARDNESS	TDS/SpC RATIO
	ppb 3	ppb 2	ppb 2	ppb 2	ppb Ø.5	ppb 1	ppb 2	meq/L	meq/L	*	ррш	ppm	
								±1%	±1%				
169 170	12	<2 <2	2 <2	4 5	<.5 <.5	<u>(1)</u>	₹2 ₹2	38.8	12.2 39.9	-52.2 5.5	2225		Ø.7 Ø.9
171	33	<2	3	55	<.5	<1	<2	14.8	17.3	7.7	1224	144	0.9
172	35 17	₹2	<2 <2	<2 <2	<.5 <.5	2 <1	₹2	9.6	9.6	0.6	681 794	8	1.0
174	9	<2	5	<2	₹.5	(1)	52	64.4	96.9	20.1	5267	68	Ø.9
MEAN STD DEV	16 12	NA Na	1 2	9 19	na Na	<1 1	7 18	25.Ø 2Ø.6	26.7 3Ø.7	-3.8 21.3	1873 16 0 8	83 62	Ø.8 Ø.1
MAX	35 3	NA NA	5 <2	55 <2	NA NA	2	52 <2	64.4	96.9 2.5	20.1 -52.2	5267 213	188	1.0
010	3	na	12	17	nn	<1	17	3.0	4.3	-34.6	413	8	Ø.7

Appendix A:

Water Chemistry in Region 3 (Epsom Area)

Well ID	Date	Temp Thrmometr	DO	TEMP Thrmistr	SpC	рĦ	Eh Zobell	Eh Sample	Alkalinity	HCO3-	C03=
	ONITS: DET LIM:	°C	mg/L .1	•C	1 μmho (25 °C)		ъV	m∀	eq CaCO3	ррв	рр∎
	PRECISION:	±0.1	±.1	±Ø.1		±.01	±1	±1	±0.1%		
175	28-Sep-88	14.8	Ø.69	15.1	582	6.82	179	-95	325	396	Ø
176	28-Sep-88	15.5	Ø.18	15.8	2378	8.63	177	113		1119	23
177	30-Sep-88	15.8	Ø.22	16.1	1164	8.96	183	136	582	664	23
178	3Ø-Sep-88	16.2	0.26	16.6	3357	8.43	179	117	1107	1324	13
179	3Ø-Sep-88		Ø.27		1888	8.71	179	90	873	1022	22
180	Ø2-0ct-88		Ø.23	16.5	4808	7.97	183	-87	1390	1685	6
181	Ø2-0ct-88		Ø.58	16.3	674	6.89	183	-54	317	387	Ø
182	Ø2-0ct-88		Ø.3Ø	16.1	3Ø38	8.21	183	109	1106	1320	15
183	Ø2-0ct-88	16.0	Ø.26	16.4	929	7.57	187	-112	558	678	1
184	Ø3-0ct-88	15.5	Ø.38	16.0	2999	7.71	193	-146	8Ø6	984	Ø
185	Ø3-0ct-88	17.2	0.34	17.4	940	8.27	188	111	487	576	9
186	Ø3-Oct-88	16.6	0.39	16.9	3436	8.20	187	-238	1259	1512	12
187	Ø3-0ct-88	16.8	0.70	17.1	2147	8.56	185	126	875	1026	21
188	Ø3-0ct-88	15.4	0.30	15.7	1651	8.67		135	674	789	16
189	Ø3-Oct-88	16.5	0.34	16.9	6586	7.93	184	-99	1210	1476	Ø
190	Ø4-0ct-88	15.9	0.34	16.3	1504	8.36	200	-99	745	893	8
191	Ø4-0ct-88	16.4	Ø.23	16.8	3857	7.84	197	-32	952	1161	Ø
192	Ø4-0ct-88	14.8	Ø.52	15.1	1928	8.34	193	-138	848	1023	6
193	Ø4-0ct-88	16.9	Ø.31	17.4	2884	8.37	188	-138	1370	1632	19
194	Ø4-0ct-88	15.0	Ø.53	15.3	961	7.83	188	-61	307	375	Ø
195	Ø4-0ct-88		0.70		888	7.42	189	-167		456	Ø
196	Ø5-0ct-88		0.25		2402	8.56	200	12		1426	22
197	Ø5-0ct-88		Ø.52		734	7.19	196	-86		432	Ø
198	Ø5-0ct-88		0.35		841	8.29	194	-170		526	11
199	Ø5-0ct-88		3.98		722	8.18	188	149		503	3
200	Ø5-0ct-88	15.9	0.20	15.6	916	7.51	190	-110	428	523	0
MEAN		16.0	Ø.51	16.3	2085	8.05	188	-28	768	920	9
STD DEV		0.6	0.71	₩.6	1447	0.55	6	118	348	417	9
MAX		17.2	3.98	17.4	6586	8.96	200	149	1390	1685	23
MIN		14.8	0.18	15.1	582	6.82	177	-238	3Ø7	375	Ø

Appendix A:

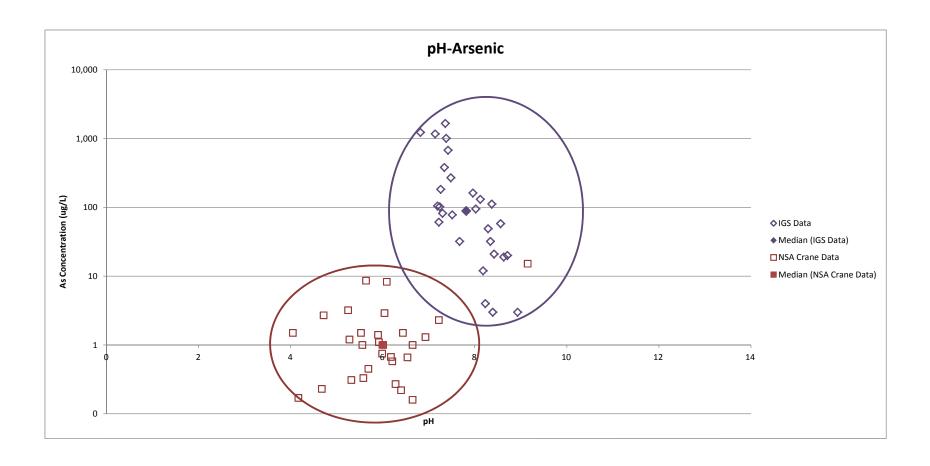
Water Chemistry in Region 3 (Epsom Area)

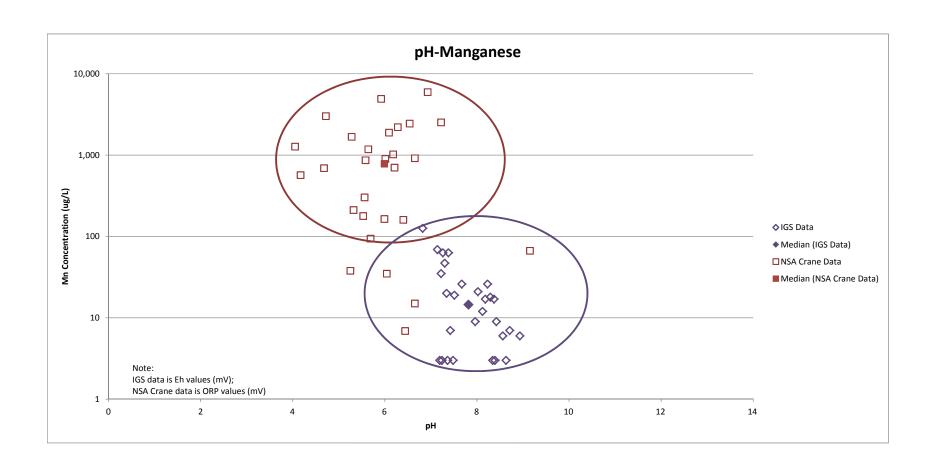
1 1 1 .1 .02 .02 .03 .09 3	pb ppb 2 2 2	9.370 9.898 9.694	PPB .04
176 269 (1 (1 8.1 3.234 1.247 3.496 712.1 19	11 <2 <2 <2 <2 <2 <6 <2	9.370 9.898 9.694	Ø.233 Ø.099
176 269 (1 (1 8.1 3.234 1.247 3.496 712.1 19	11 <2 <2 <2 <2 <2 <6 <2	9.370 9.898 9.694	Ø.233 Ø.099
176 269 (1 (1 8.1 3.234 1.247 3.496 712.1 19	11 <2 <2 <2 <2 <2 <6 <2	9.370 9.898 9.694	Ø.233 Ø.099
	<2 <2 22 <2 6 <2	0.090 0.694	0.099
10 10 11 1.1 1.021 0.102 1.003 101.3 10	22 <2 6 <2	0.694	
178 433 <1 <1 10.7 2.591 2.101 4.844 915.8 6	6 (2		0.400
179 126 (1 (1 9.5 1.275 0.872 2.901 584.7 20		Ø.246	Ø.192
180 942 <1 <1 3.3 6.881 4.697 8.017 1307 38	26 3	1.529	0.824
181 2 <1 60 0.4 3.314 3.130 3.258 155.9 175	2 3	0.242	0.123
182 452 <1 <1 2.5 1.245 2.274 4.856 912.3 27	42 3	0.598	0.532
183 20 <1 <1 2.3 0.672 0.391 1.848 290.2 88	22 <2	0.069	0.095
	102 <2	0.889	0.497
	67 3	0.068	0.045
	42 3	0.802	0.242
	24 <2	0.288	0.084
	29 <2	0.195	0.089
	40 15	4.428	2.992
	23 <2	0.250	0.093
191 700 <1 <1 1.5 7.594 4.862 7.080 1017 32 1	42 3	0.951	0.232
	74 2	Ø. 256	0.091
	59 3	0.521	0.152
194 1 <1 204 0.5 1.257 0.474 1.463 217.7 42 3	24 13	0.097	0.033
195 2 <1 134 9.7 35.39 13.19 2.912 154.4 677	50 6	Ø. 261	0.037
	35 4		0.098
197 3 <1 67 0.6 45.32 31.77 10.12 78.75 105 8	39 4		Ø.391
198 32 <1 <1 1.4 3.249 3.057 1.934 213.8 49	62 3	0.205	0.048
	22 2	Ø.149	0.040
200 50 (1 14 0.8 11.59 5.979 1.479 202.3 78	21 2	0.230	0.070
	86 3	0.670	0.334
	63 4	0.961	0.582
	39 15	4.428	2.992
MIN <1 <1 <1 0.4 0.672 0.391 1.463 45.62 6	<2 <2	0.068	0.033

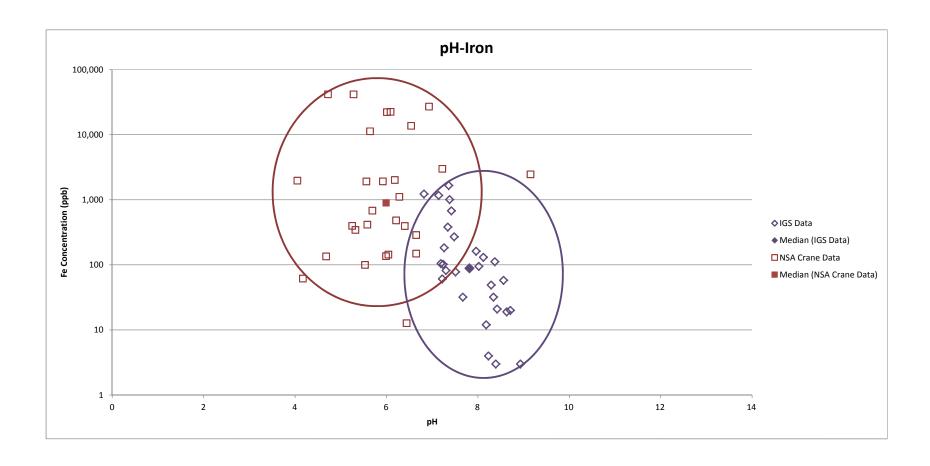
Appendix A:

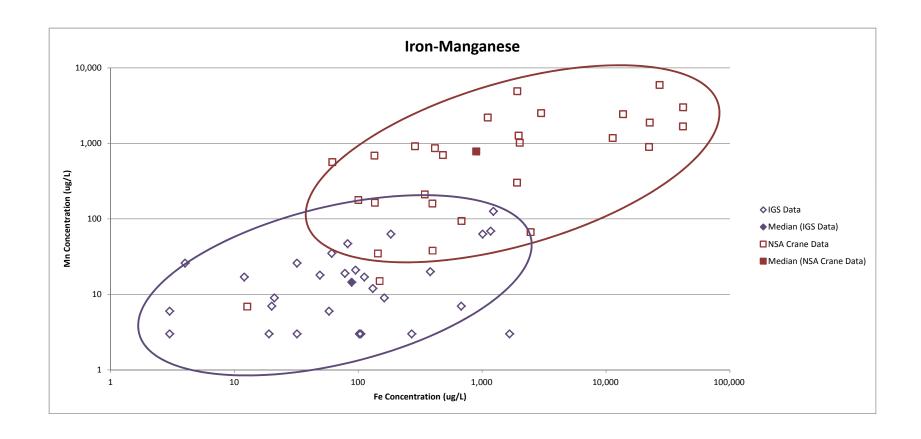
Water Chemistry in Region 3 (Epsom Area)

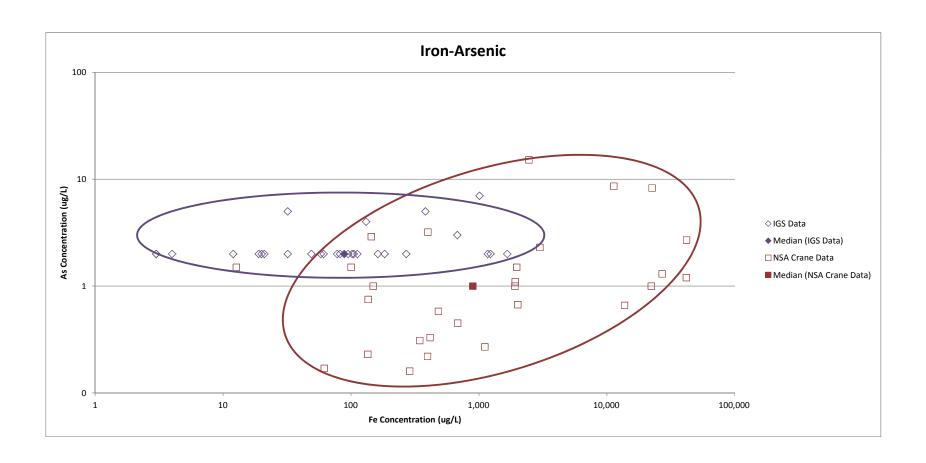
Well ID	Mn	Cr	Cd	Ås	Hg	Ag	Se	ANION SUM	CATION SUM	EPM Balance	TDS	HARDNESS	TDS/SpC RATIO
	ppb 3	ppb 2	ppb 2	ppb 2	ppb Ø.5	ppb 1	ppb 2	meq/L	meq/L	*	ppm	ppm	9
								±1%	±1%				
175	126	<2	(2)	⟨⟨2⟩	⟨.5	(1)	⟨⟨2⟩	6.6	6.1	-4.5	518	194	Ø.9
176	<3	<2	<2	<2	⟨.5	<1	<2	27.1	31.3	7.2	2140		0.9
177	7	<2	<2	<2	<.5	<1	<2	13.1	15.0	6.5	1080	12	Ø.9
178	₹3	<2	<2	<2	<.5	<1	<2	34.9	40.3	7.1	2707	15	0.8
179	7	3	<2	<2	₹.5	<1	<2	21.5	25.7	8.8	1769		0.9
180	<3	3	<2	<2	<.5	<1	<2	54.5	57.8	2.9	3965	36	Ø.8
181	17	2	<2	<2	<.5	<1	<2	7.7	7.3	-2.3	615	21	Ø.9
182	5	4	<2	<2	<.5	<1	<2	35.Ø	40.1	6.8	2711	12	Ø.9
183	9	3	<2	<2	<.5	<1	<2	11.8	12.7	3.7	995	3	1.1
184	9	<2	<2	<2	<.5	<1	<2	30.7	35.7	7.5	2317	49	Ø.8
185	5	<2	<2	<2	<.5	<1	<2	10.1	9.8	-1.9	826	6	Ø.9
186	10	<2	<2	3	<.5	<1	<2	36.6	36.8	Ø.3	2776	24	₿.8
187	7	6	<2	4	<.5	<1	<2	23.0	27.7	9.4	1879	7	Ø.9
188	7	3	<2	3	<.5	<1	<2	17.5	19.9	6.5	1405	12	Ø.9
189	16	2	5	16	₹.5	<1	<2	66.4	62.2	-3.3	4419	87	0.7
190	7	<2	<2	12	<.5	<1	<2	18.0	18.0	-0.1	1435	15	1.0
191	⟨3	<2	<2	14	<.5	<1	<2	38.8	45.2	7.6	2914	39	Ø.8
192	7	⟨2	<2	<2	<.5	<1	<2	22.6	27.3	9.4	1855	11	1.0
193	⟨3	2	<2	2	<.5	<1	<2	34.7	38.2	4.8	2788	12	1.0
194	4	<2	<2	4	<.5	<1	<2	10.4	9.6	-4.1	806	5	Ø.8
195	7	2	<2	3	(.5)	(1)	<2	10.3	9.7	-3.5	801		Ø.9
196	6	2	<2	2	(.5)	(1)	<2	28.9	31.8	4.7	2344		1.0
197	(3)	3	<2	2	(.5)	(1)	<2	8.6	8.7	Ø.5	675		0.9
198	18	<2	<2	<2	(.5)	(1)	<2	10.0	9.8	-1.0	793		0.9
199	17	<2	(2)	₹2	(.5	(1)	<2	8.5	8.2	-1.5	697		1.0
200	19	<2	(2)	2	(.5)	(1)	<2	10.3	9.9	-1.8	810	53	0.9
MEAN	12	1	<2	3	NA	NA	NA	23.0	24.8	2.7	1771	41	0.9
STD DEV	23	2	1	4	NA	NA	NA	15.0	15.9	4.6	1055	59	0.1
MAX	126	6	5	16	NA	NA	NA	66.4	62.2	9.4	4419	244	1.1
MIN	∢3	<2	<2	<2	NA	NA	NA	6.6	6.1	-4.5	518	3	0.7

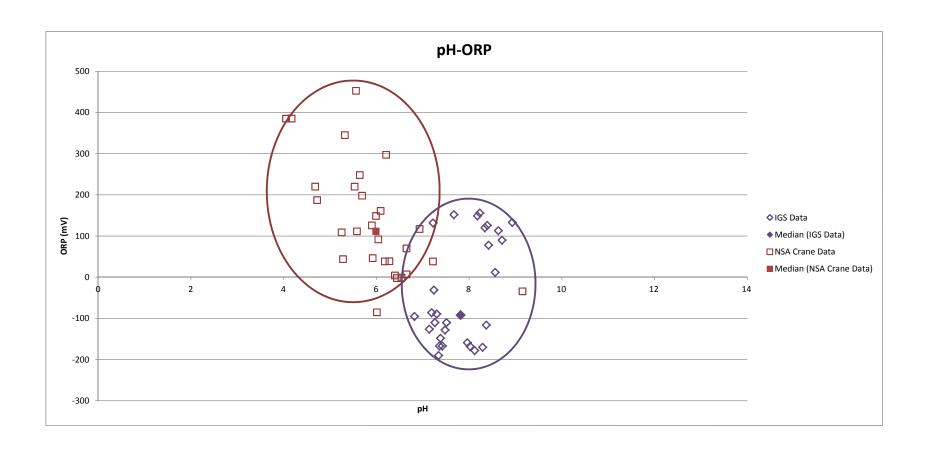

APPENDIX A-2

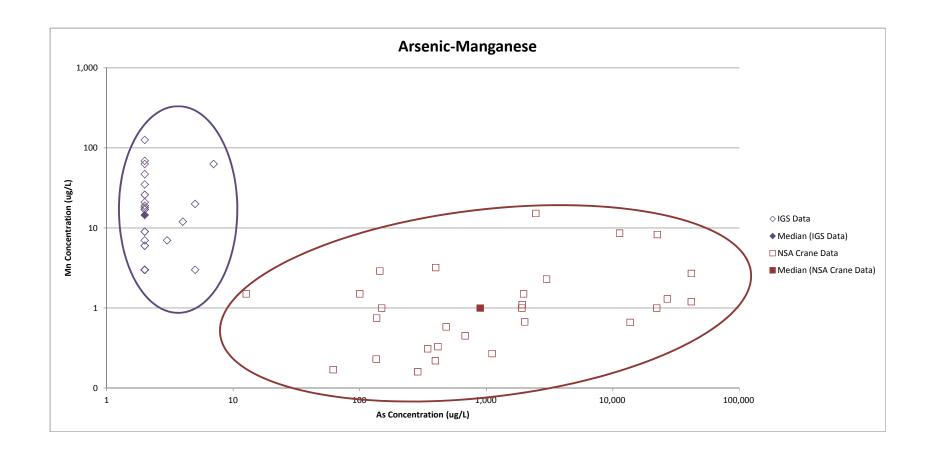

PLOTS OF


1989 INDIANA GEOLOGICAL SURVEY STUDY DATA SET


TO


NSA CRANE BACKGROUND DATA SET





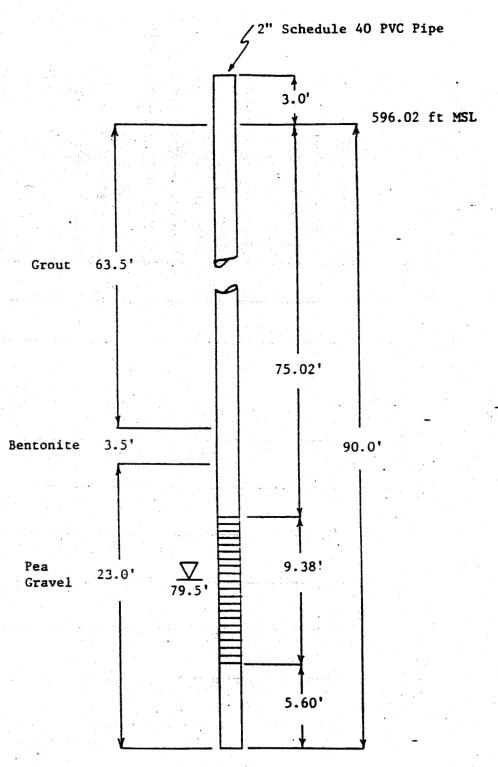
APPENDIX B

BORING LOGS
AND
WELL CONSTRUCTION DIAGRAMS

Sheet ____1__

of 2 Sheets

				•				ORING LOG					
	NWSC							Site C	rane,	IN	Date 10 November 82		
	n <u>Must</u> lg <u>Fail</u>					0	perator .	D. Taylor	Su		Job No. <u>441-G150.13GR21/2</u> 2 El <u>596.02</u> Boring No. <u>WES-1-6-82</u>		
SAMPLE	DATE	STR	ATUN	DRI	VE	SAM	PLE	TYPE OF			CLASSIFICATION AND DELIABLE		
NUMBER	TAKEN	FROM	TO	FROM	TO	FROM	ΤÖ	SAMPLER					CLASSIFICATION AND REMARKS
	10 Nov			0.0	1.5			6-3/4"Rock I	it		6" Casing-Stickup 0.5'		
,		0.0	11.7	0.0	26.0			5-5/8"Rock I	it		Siltstone: reddish brown, grey,		
							·				soft, weathered, dry		
		11.7	23.5								Shale: grey, soft-medium, dry		
		23.5	26.0				<u></u>				Shale: dark grey, black, dry		
	10 Nov			0.0	50.0		ļ	5-5/8"Rock B	it_		Air compressor filter went out		
				·							and pumped large quantity of oil		
											into hole. Traded air compressors		
		-									and moved drilling rig 10 ft west		
											to drill another boring. Grouted		
											up contaminated hole.		
			27.2								Coal: black, soft		
			_35.2								Shale: grey, soft		
		35.2									Coal: black, soft		
	11 Nov	36.0	54.5	50.0	90.0			5-5/8"Rock I	it		Sandstone: brown, red, fine-		
											grained, 75% quartz sand, hard		


WES JAN 74 819

EDITION OF NOV 1971 MAY BE USED

								ORING LOG	•		
Project								Site			Date
Locatio	n										Job No
Drill Ri	g		nspecto	·		0	perator		Su	rface E	Boring No.WES-1-6-82
SAMPLE	DATE	STRATUM		DR	VE	SAMPLE		TYPE OF			
NUMBER	TAKEN	FROM	10	FROM	то	FROM	то	SAMPLER	<u> </u>		CLASSIFICATION AND REMARKS
	·										Damp spot at 42 and 49 ft
											No water overnight
		54.5	82.5							,	Limestone: grey, white, hard
		82.5	88.5								Shale: grey, soft
		88.5	89.5								Limestone: grey, hard
		89.5	90.0						Į.		Shale: grey, soft
									İ		Water at 79.5 ft - Blew water
											from hole several times and will
											monitor depth in morning before
											installing screen.
	12 Nov										Water level at 69.87 ft -
·										l	installed well screen

WES JAN 74 819 EDITION OF NOV 1971 MAY BE USED

Sheet 2 of 2 Sheets

Water depth at time of drilling

Well Screen

NWSC, Crane, Indiana Mustard Gas Burial Grounds Well Completion Boring Number: WES-1-6-82

	Ì			
It	Tetra	Tech	NUS,	inc.

BORING LOG

Page 1 of 2

		I NAM T NUM		Alla	CRAL)Ł		ORING No ÁTE:). <u>.</u>	_O8 MWTOC	7_		· ·
	-		PANY:	NI2		- MA	·	AIE. EOLOGIS	T-	5-13-05 Jeff Schu	7		
		3 RIG:		CN				RILLER:		Jim Wal		Y	
	1	Γ	i				RIAL DESCRIPTIO				PIOPHIO		
Semp	-	Blows/	Sample	Lithology				- 	U				
Ma. and		6° or AGO	Flecovery /	(Depthoft)	Suf Carely				S				
HO0		(74	Sample Langth	or Screened	Conditions	Color	Material Chicals	4	S	Remarks			4
				interval	(Nock				•		#		į
						.					×		K
	Ti	10/	12"/	6"		200	wn sandy of	opsou	_		ol		
1	H	92						" 1			H		1
	片	2	/24	2		-	un sand wi				##	111	#
2	3	$\sqrt{3}$	18"		1	000	·			yey stlf	Ш	Ш	Ц
*	4	16	24				dry to s	light	4	modst)	H		Π
-7	5	44	22"/								Π	П	П
	6	66	24	16		•					ĦĦ	HH	Ħ
		42	22"			bro	wn sand	and pu		es of weat	leste	1	H
;4		3	-/-	11-1			sandsta		\dashv	0	- -	74	${f H}$
	8	Z50	124	<u>8′</u>		1	p of bodro	ek	-			\mathbb{H}^{1}	Ц
		/	0			La.	eved to	10'11		Land			Ш
	10				5e	4	temporar	cal	.,	~?		Ш	П
٦										1	11	Ħ	Ħ
		6	51			fm		, .			HF		H
•		10%								and stone		H	H
1	! —		/5/		•	√ a		gray		7	1	3	H
						ba	· · · · · · · · · · · · · · · · · · ·	Lidke			ا و		Ц
	15					ro	ck broke	m· e	<u>.</u>	ectally in			
						10	-15' int	erva	8		11	Π	Π
		10	2/1			10		- 74			1111	#	Ħ
ᆏ		196	3/	•							HH	+	H
2			/5								Ш		Щ.
	•												ഥ
	20			20									\prod
						mo	dium sand	12.1	1		HT		广
\dashv						Lo	cause of	LON S	H	and a	HH		廾
3		70%	5/			-	1	, 1	4	7	HH	4	#
		\angle	15			an	glad bada	ing fo	4	whatsons	Ш		\parallel
								0					11
	25				,				1		111	ΙV	几
Whe	Frock co	ring, ente	r rock bro	keness.	٠.	نــــا		L			<u>', ', '</u>		V.
" Inch	nom ebi) borehole. I	ncrease	reading frequency if eleval	led reponse rea	id.,	 Orillin 	_		
Rem	arks:	· · · · ·	· .	<u> </u>	· · · · ·	· · · · · · · · · · · · · · · · · · ·		•	<u>.</u>	Background	(ppm)		<u>) </u>
				. — — — — — — — — — — — — — — — — — — —									
io m	verted	to We	H:	Yes	<u> </u>		No	Well I.D.	#:_	08 MW TOO	27		

化	Tetra	Tech	NUS	Inc.

BORING LOG

Page 2 of 2

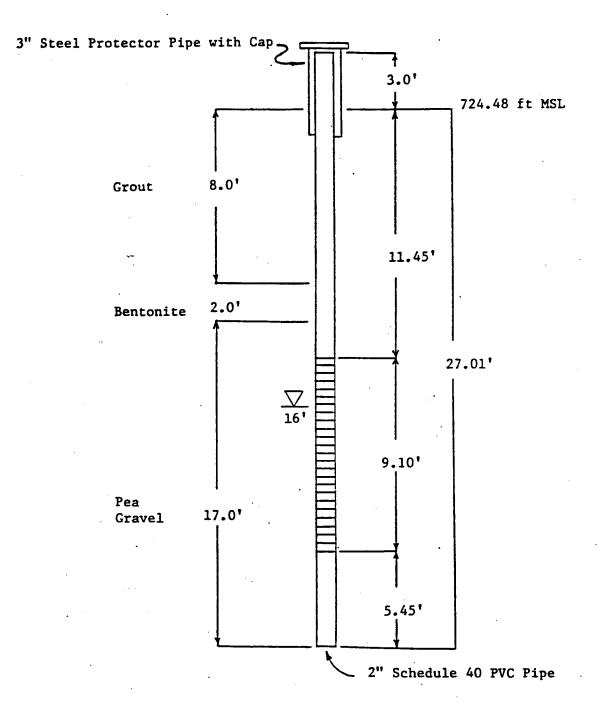
Ho. (FL) or story or	G: Sample flacoury 20 Longth 2// 5/	Lithology Change	M Sod (kendi)/		X-ATV RIAL DESCRIP		U S C S .	Flemarks	-ds		-
He. (FL) cr and or flo Type or flun floor flu.	or Recovery 20 1 Sample Largth	Change (DeptMFL) or Screened	Sod Country Constanting				5 8 C 8 -		aguine.	-	
	2'/ 8 /51							Con Tanto Antona			C
1		30'			Same a	s abo	7		6 -	0	
5 /	3/5	35			gray to coal, a broken			siltstone, very			
35/		5 5	35	or	camed and pack	dapph hole of led gr	U TO	33 bgs			
				co	rehole	with		roller bit			
*When rock coring,) borehole. (ncrease	e reading frequency if o	devated repanse of	ead.	• Orilin	g Ar	ea	

WELL NO .: D8MWTOO7

BEDROCK MONITORING WELL SHEET WELL INSTALLED IN BEDROCK

Tetra Tech NUS, Inc.

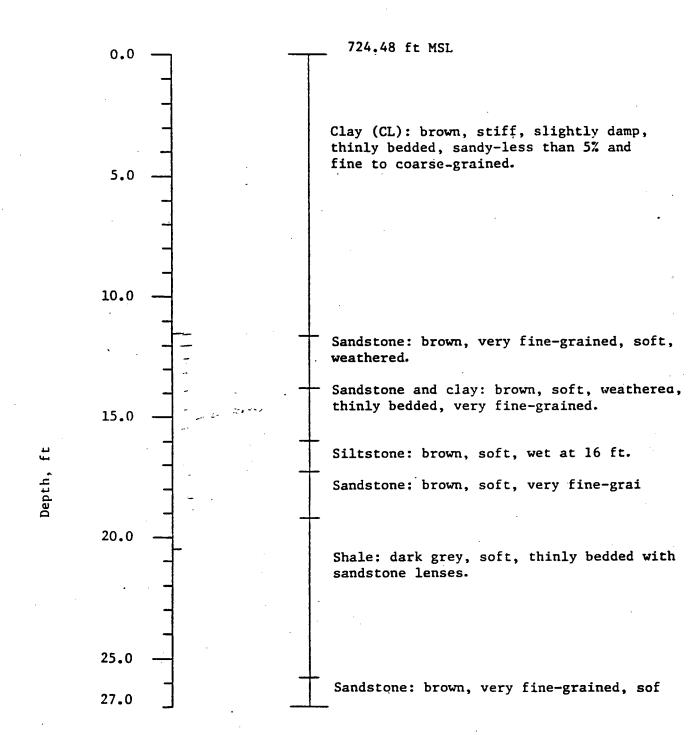
	Teua Teoli 1100, III.	
	PROJECT NSWC CRANE LOG	CATION SWMU 8 DRILLER Bowser Morne
	PROJECT NO. N 1245 BOI	RING ORMWT007 DRILLING 1100 / 01
	DATE BEGUN 5-13-05 DATE FIELD GEOLOGIST Teff Sc	
		TUM A/A V.D 88 METHOD
Z o	•	— ELEVATION/HEIGHT OF TOP OF SURFACE CASING:
20/98		
//0		— ELEVATION/HEIGHT TOP OF RISER: 701.31/1.58
Z.dwg		- TYPE OF SURFACE SEAL: 4/x4/x6" concrete
MWINBR.		
		- 1.D. OF SURFACE CASING: 4" x 4" Square \$ steel protective cooling with
ACAD: FORM		steel protective cooling with
ACA		- DIAMETER OF HOLE: Binches
		from 0 to 9 ft bgs
		-RISER PIPE I.D.: 2 inches
		TYPE OF RISER PIPE: PVC.
		- TYPE OF BACKFILL: coment-bentonite
١		growt
		- ELEVATION/DEPTH TOP OF SEAL: 695.73, 4.0
	T.O.R.	-ELEVATION/DEPTH TOP OF BEDROCK: 687.73/10.0
		- TYPE OF SEAL: benton ite chips,
		medium
	'E'	— ELEVATION/DEPTH TOP OF SAND: 683.73, 16.0
	**************************************	- ELEVATION/DEPTH TOP OF SAND: 603.13/16.0
		— ELEVATION/DEPTH TOP OF SCREEN: 681.73/18.0
		TYPE OF SCREEN: PVC
		SLOT SIZE x LENGTH: 0,010 inches 15.0 feet
ļ		I.D. SCREEN: 2 Inches
		- TYPE OF SAND PACK: Silica Sand
		No. 10-20 U.S. Standard Sieve Size
		DIAMETER OF HOLE IN BEDROCK:
		CORE/REAM: 2"/6" from 10 ft
		to 35 feet bas: 2" core only
		From 33 to 35 ft 69 666. 73 /33.0
		ELEVATION/DEPTH BOTTOM OF SAND: 66 73 /37.0
		— ELEVATION/DEPTH BOTTOM OF HOLE: 664.73 /35.0
		BACKFILL MATERIAL BELOW SAND:
ļ		up clay/shale dust shokesed into
		Il 2" me hole with the voller


				e.		•	_	ORING LOG		
Locatio	NWSC Con_Pest g_Fail	Conti	ol Are	a	unbar	0		Site		Job No. 441-G150.13GR21/22 urface El 727.48 Boring No. WES-9-10-83
SAMPLE NUMBER	DATE TAKEN 1983	STRA FROM	MUTA	DRI	VE TO	SAM FROM	PLE TO	TYPE OF SAMPLER		CLASSIFICATION AND REMARKS
	1 <u>8 Λυ</u>	0.0	11.6	0.0	11.6			5"Folding Λu	er_	Clay(CL): brown, stiff, slightly
						· 				damp, thinly bedded, sandy-less than 5% fine to coarse-grained.
	18 Au	11.6	13.8	11.6	27.0			6"Rock Bit		Sandstone: brown, very fine-grained, soft, weathered.
		13.8	16.0							Sandstone and clay: brown, soft weathered, thinly bedded, very fine-grained.
	······	16.0	17.3							Siltstone: brown, soft, wet at 16 ft
		17.3	19.2		·					Sandstone: brown, soft, very fine-grained.
		19.2	25.8							Shale: dark grey, soft, thinly heade

WES FORM 819

EDITION OF NOV 1971 MAY BE USED

with sandstone lenses.
Sheet 1 _____of ___ 2 __ Sheets


					BORING LOG FIELD DATA						
Project Locatio Drill Ri	Rig Inspector					O _i	perator_	Site	Su	rface E	Date Job No I Boring No.WES-9-10-83
SAMPLE NUMBER		TAVEN				\$AM FROM		TYPE OF SAMPLER			CLASSIFICATION AND REMARKS
-		25.8	27.0								Sandstone: brown, very fine-grained soft.
	18_Auş	,									Installed monitoring well.
									· · · · · · · · · · · · · · · · · · ·		
			·								
		i									

 $\overline{\sum}$ Water Depth at Time of Drilling

Well Screen

NWSC, Crane, Indiana Pest Control Area Well Completion Boring Number: WES-9-10-83

NWSC, Crane, Indiana
Pest Control Area
Lithology
Boring Number: WES-9-10-83

A LOCATIO	WSS	Gp	unduder strang	∤		-	
	7. P	st Co	Arol-Woods Stran Tonk	12. 848	UFACTUR		SAU
A WOLE MO		1.41	<u> </u>	13,.707			
L BALL OF			WESOUTLA -06.		AL WUNDE	a coat (losts
1		Dar	Taylor	IL ELE	VATION 61	1004D 44	TER
D. VERT			044. FROM TEPT.	16. BAT	E HOLE	خا	126/86 7/20/
7. THICKNE	15 OF OV	ROURDE	N		VATION TO		
		170 ROCE			ATURE OF	MITTEL	Geologist
S. TOTAL D			26.7 '		& CORE	90 X 04	CU. Hant
ELEVATION	DEFTH	reca0	CLASSIFICATION OF MATERIA (Promption)		RECOV-	00.	(Dellas) time, when been, death of decidential, of a., if distributed
	2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 4 4	Sithy clay (CL) y B Growthing, vfir SI. moist, num incressed nod-los dia) in upper zo CCC was SS Sdy w/depth	- w/		ਰਵਾ ਰਹਾਂ ਵ	Storted dr. Ming when 8"die fold auger. Tock spli where pess blom a 3" push tube t cleaned hole mil e" onger.
ENG FORM	7 8 9 10 11 11 11 11 11 11 11 11 11 11 11 11	PAEVIOU	Top of highly woo (See Next sheet		PAGJECT	⊽ar 5?! # 2	Set 9.8' of Temporary 6"sta Casins. + Cla. hole to 10.2' my nit

ENG FORM 1836 PREVIOUS EDITIONS ARE OMOLETE.

(TRAFILUCENT)

LOCATIO	· (1000	12 640	UFACTUR	O C 10	SHATION OF DRILL
P DUILLING	AEL WET		<u>.</u>	AL '00' D		<u> </u>
	(As were 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	read mate	-			
L HAME OF	ORILLEA			AL MUMBE		
& DIRECTIO			-	E HOLE	1000	
			n. ELE	VAT 100 TO	> or no	
	LILLED MTO ACC					7 FOR BORING
	FTH OF HOLE		10. 1464	ATURE OF	INSPECT	04
ELEVATION •	DEPTH LEGEN	(1)		S COME	BOI OF BAUPLE BO.	REMARKS (Digling time, more bea, mayb of mattering, while it algorithms)
		Substant , y & re friend , oxid mod had frieble, largely flattened	חטים	,	المارة المارة	Storted aring w/a 4x5/2" con but at 10.2'
Ļ		to firm clay inch occ sub-organia + # bd obushele (Zip-up Clast?).	chy mel	2.3	8~~ (Ser)	
·		CI to yy'in are isoloted wing the SS metile	**	12.5 Runz		
		conglomerate of ance). The Charles represent 30 to 50% of the	grave.			
-	A. H.	mass Vol	·	4.3		en e
				7	Ja 1 5-7 - 4/	
	"					
				16.8		•
		· .		5.0		
				5.0		
	20 -2:	1				

TO FORM 1836 PREVIOUS EDITIONS ARE DESOLET

(TRAFSLUCENT)

L					·- · · · ·			
E. BAILTIAL				12 040	UFACTUR	CH I DEL	CHATION OF D	AILL .
4 HOLE WO	•/• •			12,101	41 80.0	-		
				14 701	46 8080	ER CORE		
6. SAME 01			-	16 EFE	44710H 6	40040 A		
4 DIRECTH		···CLME!	044 FROM TEAT.	SL DAT	Z moLZ		M 7 E D	
7. THICKHE			· · · · · · · · · · · · · · · · · · ·			of 01 HO		
a. 9697# D						HECOVER	T FOR SORING	
S. TOTAL D	CPTH 07	HOLE	CLASHFICATION OF MATERIA		3 5005	90X 08		Reades
ELEVATION	OCPTH	LEGEMO	(Powerpton)		S COME	MO.	(Dystley to	, were box, days, of
	70 -	·:	55, highlyweal	mil)				
l	=	. 1	, , , ,			Jar Se		
		D.	•		i	5	·	
l	21_	177			1			
\	=							
l `] =							
l	=	077			71.8	1		
	Z2	1	•		Run 3			
	=		•					
		1						
]	30 ;	·					
	27	+ +	Coal, Blk, hd, bl	ocky,				
	=	++	brittle.	ı				•
	-	, 4 ±		- 1	4.9			
	\exists	++			14.7		•	
	21-	30 +	÷ //- 4 // 6:::					
	=	8 ::	mass Ad Sliffied	10			•	
		E	pleat inclus that q	√`				
	25-3	: :	an effect to the	ا وسم				
	"=	1 ::	like realleds ox ken downward from H			30.50		,
	三		Jorelying coal be			-	Set u	rell sciee.
	∃	::	80° Jt 15 1/4 "ope				detern	20.7 + 25
	26-	· ::	too in state become				f+. (s	sae well
	\exists		tight and fades o	لميمه مو سه	10/4/1	~	dowing	for detail
	一二		Bot of boh is top of shesu	use.	76.7			
	=	1	But Depth 26.	7				
	²⁷		201. 7					
	.∃							
	\exists]				
	_=							
	三		ē.	İ				
	三							
	Ξ							
	3	į						
	3		•					
	4	l		1				
	∃							
		1		- 1		1		

ENG FORM 18:36 PREVIOUS EXTRONS ARE DESCRIPE.

L LOCATION	(Canada						
1 Dailling	ACENCY			12. 840	W ACTUR	Cu.P OCP	GRATION OF DRILL
	(4			11 TOT	AL BO. OF	DVER. LES TAR	EN
-	DAILLEA				AL EURO C		
& DIRECTIO	- 67 -01			-			MTED COMPLETED
	•••	w(L==	9 944. Phon TEN1.	W. DAT			
7. THICEMES	1 0 0ve	-	[*		AL CORE		T fan Boning
. DEFTH D			*		ATURE OF		
ELEVATION			CLAMIFICATION OF MATERIA		1 COME	BOX OR	REWARES (Profing time, water from death of
	•		WES-WT67-8	2	-	-	
	=					1	Precometer Plan
		П	Z.5' (Approx El-	736.0	P	1	(External well
			0.0' Ground sur	Foce			Puc Pipe to a
\		11					Depth of 6.7
	=				l	1	Teflon Pipe bel
	=		ì				e.7'
							Set well screen
	=		1				0 7/28/86
	╡		Grout Mixtur	•			water level on
	\exists						7/29/26-13.9
	=		water land - 14.0	' ,			(from Top Pieer)
	\exists		8/14/86 (From Top				Developed Well
	ヨ			- 1			on 7/31/86
	=						The procedure t
	크						developing + c
	Ξ						13 describer C
1	-=	ᅰ	16.7'	1		1	Plan for WES
}	⇉	8 8	Bentonik Pellet				LTIP-EL.
	크	SI R	DEL SENIR TETTE			i	
	∄	ЫĶ	1E.7'	1			The equipme
	-7	- 1	Filter Granel				uns steam cle
	\exists	41:	(Pec s.ze)	1			prior to use.
	7	,H:	20.7	1	٠,		
	3	٠] [.					
	긐	11:	'	- 1			
	∄	11.	well screen	1			
	\exists	•][.		- 1			
	╡	.] [.		1			
·	日	.1	,				
	_=		25.7	.			
	日	iΠ.	Trap				
1	크	<u>:11:</u>	26.7'			1	
	=		. 26.7	l			•
	耳			j			
1	크						
ENC FORM	Ξ						

ENG. FORM 1836 PREVIOUS EDITIONS ARE OMOLET

FTR ARM DERRY

PRO.	JECT	NAME NUME COMF	BER:	NSWC C 7141 CT Bowser N	O 10		BORING NU DATE: GEOLOGIST		R: 09T01 12-3-00 MATT COCHRAN	<u>A</u>			<u>-</u>
DRIL					-59	\	DRILLER:	•	A WOLF				_
							RIAL DESCRIPTION			PIO/FID	Reed	ling (p	pm
Semple No. end Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth /Pt.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Cdlor	Material Classification	U S C S ·	Pemerke	Sample	Sampler 8.2	Borehote"	Driller BZ**
							SEE BORING						
							LOGS 95801,02	24			\Box	\neg	
					i		03 FOR LITHOR	1			П	\exists	
												\neg	٦
										П		\neg	\neg
							······································				□ □	\neg	ヿ
				1						\vdash	П		\neg
	-			1				\top		П	П	\dashv	\dashv
	-							+		\vdash	\sqcap		一
-	\vdash					BAN	SANDSTONE	\top	1250 - 150 50	+-		\rightarrow	•
			-	1)	1.	+	WEATHERED		\vdash		
-						V	V	\dashv	EASY PRILLING	\vdash	H		
-				¥ 5WL	-			+	DRILL RATE	+-	\vdash		
\vdash	+			12-4-00		 		\dashv	15 SEC FOOT	╁	Н	H	
-			 	1		-			AT BEGINNING	\vdash	Н	\vdash	\vdash
-	-		 	1		1		-	OF DAY	╫	┼┤	\vdash	
-	-			╣	ļ	+		+	<u> </u>	╁	\vdash	H	
	-	\leftarrow	 	1		 		+		+	₩	-	
_	-	50	 	4		-		-		┼-	 		_
<u> </u>	19	50/	1.1/	4	SOFT	BRN	SANDSTONE	_	ATTEMOTED	M	104	NA	WA
57	<u> </u>	\angle	2.0	4 .		<u> </u>		_	SPOON.	╀	├_	ļ	_
	21			_				\perp	ACL REACTION	1	1		
<u></u>										\perp	\perp	<u> </u>	
			1	_						\perp			L
	24		1										
T	,			1	SOFT	GREY	SILTSTONE		MENTHERING				
		-	ter rock brok							ing A	\		
	narks		ing in 6 foot DRIL	_	orehole. Increa: اکا ایما		g frequency if elevated reponse read.	TIFA					H
		To		RE		à.	MAY GET POOR F	EF CC	VERY SINCE				
Cor	verte	d to W		Yes			No 'V We	# I.D.	#:				

		Tetra				므	ORING L	<u>ou</u>					
		NAME		NSWC C				BORING NUM	BER	12-3-00	Α		
		NUME		7141 CT Bowser				DATE: GEOLOGIST:		MATT COCHRAN	2		
		RIG:	ANT.		3-59			DRILLER:		A. WOLF			
JUIL	LING	nia.											==
iemple No. and 'ype or RGD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Semple Recovery / Semple Length	· Lithology Change (Depth /Pt.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	MATE Color	RIAL DESCRIF	TION	U & C & •	Remarks	PIOFIC	Read 28 Heldwiss	
			9.8/			10111111				FE. STAINED ALONG BEDDING VERY THIN SHAL BEDDING TOP I' SANDY BEDDING PLAMES TOP I'COM ZIT - 33 ! LIKE CONGLOWERATE	ae	33333	55555
<u>(-1</u>	:		10.0]						CONCRETIONS			
9.0		40%							\perp	BROKEN THRU CORE		\sqcup	_
10.0				_					+	RUN LOOKS		$oxed{\sqcup}$	_
+	<u> </u>		<u> </u>	33	<u> </u>	BLAC	£ 6		+	LOW & FRACTS	$\left \cdot \right $	\vdash	\dashv
A	34		-	-			COAL	7 / 1	╁╴	(SEVERAL, THRUCOM	1	H	\dashv
	-			1			1.0	59	-	H20@20.7		П	\neg
			1	1						BGS AFTER			
	<u> </u>			4	i	<u> </u>			\perp	ļ	igspace	\sqcup	
	_	\prec		-	<u> </u>	ļ. 			+		+	$oxed{H}$	_
	-	\leftarrow	-	-					╁		+	H	-
	-			1					+		+		\vdash
	<u> </u>		1	1					\top		T		
				_							\perp		_
	-	\prec		-		_	<u></u>	~	-		+	+	-
	-	\leftarrow	-	-		+			+	 	+	+	\vdash
	-	1	+-	\dashv		+			+		+	+	\vdash
* Whe	en rock	coring. er	ter rock bro	keness.	<u> </u>		1						1

ANNULUS AFTER HOLE PURGED

Well I.D. #: TRICKE Converted to Well: OFFSET RIG + DRILLED ZND BORING TO EVALUATE PRESENCE OF HZD AT DEATH. ABO UE CHALE HOLE BACKFILLED WILCEMENT/BENT GROW

	PROJECT NAME: NSWC CRANE PROJECT NUMBER: 7141 CTO 10 DRILLING COMPANY: Bowser Morner							ING NUMB	ER:	09TC	<u>) (</u>	B	
							DAT		-	12-3-	<u> </u>	<u>o</u>	
			ĄNY:		3-59			LOGIST:	-	MATT COCHRAN			
DAIL	LING	RIG:						LER:	;	A. WOLF			
Sample No. and Type or RQD	(Ft.)	Blows / 6* or RQD (%)	Semple Recovery / Semple Length	Lithology Change (Depth /FL.) or Screened Interval	Soil Density/ Consistency or Rock: Hardness	MATE Color	RIAL DESCRIPTION Material Classifica		U S C S ·	₩ ৠ F			Borehole** 50 Driller BZ** 30
							SEE BORING	LOGS				2000	
							95001,02						\Box
							FOR LIT				П		
].									
				*SWL			ROCK @	8		SWL ON 124-00 OF 8,20 BGS WHEN PRILLED TO			
	9			12-4-00						END OF ISTRUM			
Y	\$47		1		SOFT	LT BRN	SANDSTON	<u> </u>		I FOOT /MIN.			
							(SILTY	,)		BROKEN			
]						NO REALTION TO		П	
\prod			1	7						MOIST.	Π	П	
П				7						@ 12,13.5,15;+		П	,
C-1	1.		9.1/	7						ALONG BERRING W		\Box	
825		100	2.0	7						BEDDING IS HORIZ		\sqcap	
10	1	1 33/	-	Η ,		\vdash		· · · · · · · · · · · · · · · · · · ·	 	WEATHERING ON	十	H	
	+-	1	1	1		+			+	FRACTS OTHERWIN	\$.	╁┤	
1	19		+-	1					┝	MORE SANDY	+	H	
19	119		 	1		-			\vdash	Q Q 18'-20'	+	+	
H	+-	1	 	┪	605	LT			╁	NO REACTION TO	+		\vdash
H	+	+	 	-	SOFT	BRN			╁	HCL. V. THIN BEDDING & 20,	+	H	
C-2		\leftarrow	+ ,	-	 	+	(SILT)	Y)	╀	ALONG BEDONG.	╀	╀	$\vdash\vdash$
7.0	_	100	7	-		-			-	PE STAINING Q	-	+-	-
7.0	 	+	7.0	-{	· · ·	GRE	J		╀		+	+-	
	20.55		100 000	1		BRO				<u> </u>			
			iter rock brok ting in 6 foot		orehole, Increa	se readir	ng frequency if elevated repon	se read.		Drilli	ing /	∖rea	
	marks	:	SPU	9 6	" CAS	in	6 TD9'	PLACE		Background	-		
			REPOI	W N	SEALWI	REL	IN E		5/				
Co	nverte	ed to W	elt:	Yes		_	No	Welt I.	D. #	0970			

	t	Tetra	Tech NU	S, Inc.		E	BORING LO	<u>og</u>	Page <u>2 of 2</u>					
		NAME		NSWC C				BORING NUM DATE:	BER	: 09 TO		<u>B</u>		
		COMF		Bowser				GEOLOGIST:		MATT COCHRAN	<u>ں</u>			—
DRIL	LING	RIG:		ß	-59			DRILLER:		A. WOLF	•			_
						MATE	RIAL DESCRIPT	ION		1	PIDAFIC	Read	ing (p	·Pm)
Semple No. end Type or RQD	(Ft.)	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth /Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color			U s c s ·	Remarks	Semple	Sampler BZ		Drillier BZ**
	26		1				TO	26'						
				1			SEE BOR			REMED HOLE		\sqcap	\neg	
			-	1		1	OPTOIA		T	TO TO + PUNPER		\sqcap	\dashv	
<u> </u>				1		 			+-	2 GALLONS HED		\vdash	\dashv	
 			 	1			LITHOLOGY		+-	MIN STANDBY	-	\vdash	\dashv	_
<u> </u>	├			4			26'	•	-	TO BE SCREENED	1_	${oxed}$	_	
<u> </u>	_	/_	<u> </u>	1					↓_	SATURATED	<u> </u>	Ц		
]]			·			THICK NESS,				
			1	7.						15 SEPERATE		П		
			1	1					1	UNDERLYING UND		П		
	-		1	1		1			+		\vdash	H		\vdash
-	+		-	1		 			+-		+-	\vdash		-
<u> </u>	┼	/		4	<u> </u>	┨			+		┼-	$\vdash \vdash$		\vdash
<u></u>		<u> </u>		4		1			1		<u> </u>	\sqcup		<u> </u>
					<u></u>		,							
			1	1		1								1
			1	7								\prod		Γ
			1	1		1			\top			П		Г
\vdash	\dagger	17	1 -	-		+			+		+	+-	\vdash	十
\vdash	+		+	-{	<u> </u>	+-	+	····	+		╀	╂╌┤	⊢	╀
\vdash	-	/	 	-		+-			+		+-	┦	-	+
<u></u>		\swarrow		4		_			\perp		1	<u> </u>	<u> </u>	1_
			1											
			1	1					T		\top	T	Π	Τ
	+	17	1	7	·	+-			1.		+	+	T	T
-	+	/	+	-		-			+-		+-	+-	\vdash	+
-	-	+	-	4		\perp			+	-	+	+-	\vdash	+
			<u> </u>		1			<u> </u>	\bot		\perp	⊥_	丄	上
** Inc	m ebuk	onitor rea	TOPPE	intervals @ 1	z6' 01	V 12	ing frequency if elevated	1 DN 17	<u>- 4</u>	8.20 Backgroun	d (p	Area p m):		5_
		*	€ 1 <u>F</u>)¢	TOW .	WORKI	NG	ON 12-3.	WORKIN	C	PROPERLY O	N	12-	4	_
Coi	nverte	ed to W	eli:	Yes		- "	No	Well	I.D. ‡	t: O9TOL		_		_

TŁ	Tetra Tech NUS, Inc.
----	----------------------

Page 1 of 1

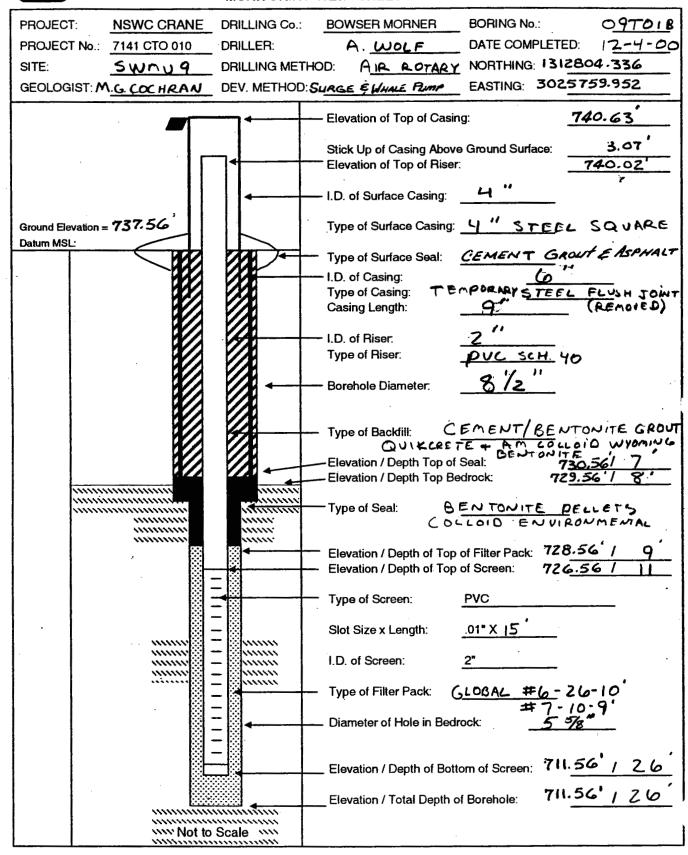
	ROJECT NAME: NSWC CRANE BORING NUMBER: ()95831 ROJECT NUMBER: 7141 CTO 010 DATE: 1,-30-00 RILLING COMPANY: Bowser Momer GEOLOGIST: BOB BALKOVEC													
									7	<u> ハ・30 つし</u> BOB BALKOVEC				
DRIL			, , , ,	GEOPRO				DRILLER:	-	TED KEEN				
					N	JATE	RIAL DESCR		ΤĪ		PID/FID	Reed	na (pr	m)
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth /PL) or Screened Interval	Soli Density/ Consistency or Rock Herdness	Color		l Classification	U 8 C 8 ·	Remarks	1.0			Driller 82-
	1			191	Luose	1001.	N 811 60	Wiel Wysmo	EW			Ue		io.
	2	/			Ŋ.	1		במיף בטיהב	1		0.0	7		Ц
5-1	3	/	25/		SLS-cap	120.	Dora 14" (COME SHE POSTON	SL.		Oe		_	\coprod
(co)	4	/	₹4'		1	1	}	<u> </u>	1	·	və	Ш	0.0	\coprod
_	5				STRE	BBA	CVAY	7-5227	CL 1		0.0	\mathbb{H}	\dashv	\coprod
-	6		-			UCAY ,			\mathbb{H}		ა.ე	\mathbb{H}	\dashv	+
53	7		4'/			H			++		Op	H	_	H
104	8		4		VSTAT	H			H		00	$\ \cdot \ $	00	H
5-3 in1	10		3,		7	7				<u> </u>	სა		02	A
				7010										
		\angle				<u> </u>								
<u> </u>	-	/		4					_		_			
-		K	-	-	Sampled	04	1000 000 000 000 000 000 000 000 000 00	EN FROM 1-25	-		+			
-	-	V_{j}	-		-			-		+	+	_		
					Sampled	७५५	৪৩ ১৩৫৩	£ 1120			\perp			
** Inc	lude mo				orehole. Increa		Dri Backgrou	illing <i>A</i> ınd (pp			<u>o</u>			
Cor	verte	ed to W	/ell:	Yes		_	No 💟	.D. #:				_	_	

Page 1 of 1

PRO	JECT	NAME	E :	NSWC C	CRANE			BORING NUM	BER	ECESPO :				
PRO	JECT	NUM	BER:	7141 CT	O 010			DATE:	_	11-30-00			_	
DRIL	LING	COM	PANY:	Bowser I	Morner			GEOLOGIST:]	BOB BALKOVEC				
DRIL	LING	RIG:		GEOPR	OBE			DRILLER:		TED KEEN				
						MATE	RIAL DESCRIP	TION			PIDAL	Reac	ilng (ı	(mqc
Sample No. and Type or RQD	Depth (PL) or Run No.	Blows/ 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth /PL) or Screened Interval	Soil Density/ Consistency or Rook Hardness	Color	Material Cla		U S C S	Remarks				Differ BZ*
	1	\angle		6/19	Loose	BRZ	RUP 4" GOAL	24 5mp =	GM		0-3	oə		ణ
	2	_			1	1	7wp 50-	·	4					
	3	4			STORE	82.	Bril6 520	ng Cidy	u					
5-1 1246	4	/	30//		7	1	7				il	Ш	0.0	Ш
	5	4		/	אניצטפע	کوند داک	20818 Szuz.	« Cur			ve			Ш
	6	Z,			9		Barr				00			11
۶. ک	7	Z,	·		STUR	<u> </u>	Sea Some John &	Cur			03			
1352	ı	K,	4/4	1717	<u> </u>	1	DOTT I WENT	MERED S.S.	*		03	1	ા	N
	9	K,					REFUYLE	3,			_			
5.3 1257	10	Z,	3.			_								_
_		/				<u> </u>					_	_	L	
	ļ	/				_					_	_		_
	_	K,							_					L
	_	K,			Sampled	099	5000 0007 Vacis TAKEN	61249	_		$oldsymbol{\perp}$			igspace
							VUCES TAKEN	(CAMI)			\perp			L
	_				Sampled	04	58020603	छ ।५७०		tein Frunciscos				
** Incl	ude mo	-			orehole. Increas	se readir	ng frequency if elevated	reponse read.	<i></i>	Drilli Background				<u></u>
Con	verte	d to W	ell:	Yes			No 入	Well I.	D. #:				-	_

Page 1 of 1

	TNAME		NSWC C			BORING NUM	BER	: ৩৭ <i>১</i> ৡ১৯				
ROJEC RILLING			7141 CT Bowser N			DATE: GEOLOGIST:		いーシャーシロ BOB BALKOVEC				
RILLING			GEOPR		-	DRILLER:	•	TED KEEN				
\top	T			N	MATE	RIAL DESCRIPTION	Τİ		PID/FII	Rec	iing (p	(mak
emple Depth No. (Pt.) and or pe or Run RQD No.	6° or RQD	Sample Recovery / Sample Langth	Lithology Change (Depth /Ft.) or Screened Interval	Solf Density/ Consistency or Rook Hardness	Color	Material Classification	U	Remarks	Bemple	8empler BZ	Borelrole	Criller BZ*
1			14	SLSOAR	BY5 UK	שף מ" השבות נמו מן	U		00	9. <i>U</i>		CO.
2				Þ		URLIMIZE T-F ZWE - LIMINIUM SMI	<u> </u>		$\downarrow \downarrow$			
3		31"/		Arte	Kerr	BOW Hy STICK COM	\prod		\coprod			
344 4	K,	si' u'		,		4			A	\prod	υĴ	\parallel
5	\vee			1		TUP / SALT CLAY	+		25			\parallel
6	\angle	.		-	1	<u>v</u>	1		$\frac{\parallel}{\parallel}$	ig		H
5-3-	/	7)5//	20.6.5	, y		BUTT 15' Francis SAMON CALL	-		+	16	00	\frac{1}{2}
350 8	/	55'			-	W/ WEATHERD S.S.	-		+	+		ig
9	4	-				REFUSIL 265"	-		+	+	\vdash	\vdash
10			-		-		+		+	+	-	+
_	+						+		-	+		\dagger
	1	-			1				+	+	-	\dagger
		-	1			9 12 17	-			+	╁	\dagger
		+		Sampled	04	COLLECTED WILLIAM FORESCO		Jan Danies V		1	1	\dagger
				Sampled	Da	SBOTONG C1355	- 0 H	MANUS OF 15 CALL				†
	monitor rea	-				ing frequency if elevated reponse read.		Dri Backgrou	lling nd (p			<u>۔</u> س
						-		<u> </u>				_


Tetra Tech NUS, Inc.

BEDROCK

WELL No .:

09701

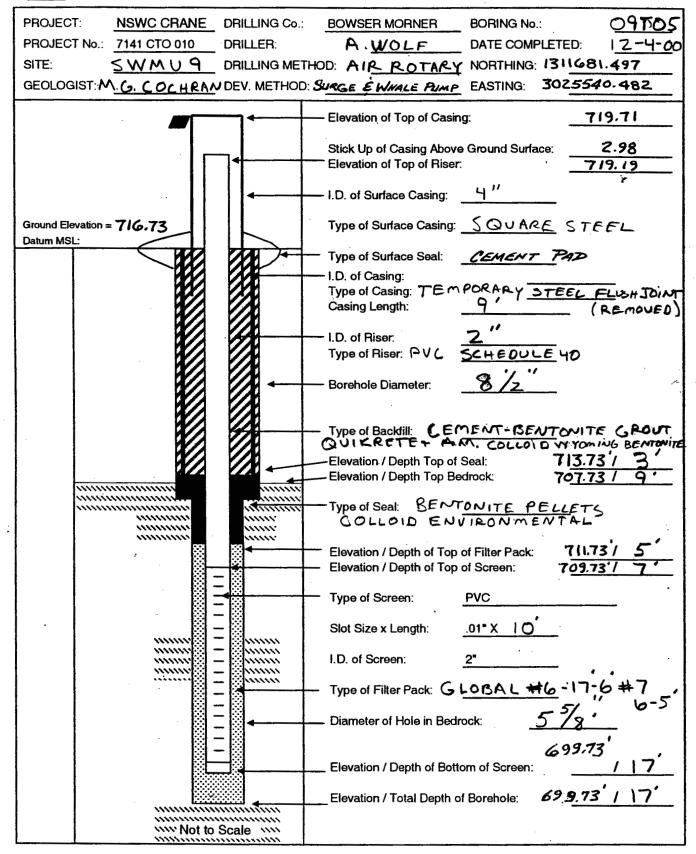
MONITORING WELL SHEET

Page _1_ of _1_

PROJECT NAME:	NSWC CRANE		BORING NUMBER	: O9T05	
PROJECT NUMBER:	7141 CTO 10		DATE:	12-4-00	
DRILLING COMPANY:	Bowser Morner		GEOLOGIST:	MATT COCHRAN	
DRILLING RIG:	B-59	MOBILE	DRILLER:	A. WOLF	

DRIL	LING	RIG:		<u>B</u>	-59	Mc	BILE DRILLER:		A. WOLF	_			
				MATE	RIAL DESCRIPTION	-	PID/FID Reading (ppm)						
Semple No. and Type or RQD	Depth (Pt.) or Run No.	Blows / 6" or RQD (%)	Semple Recovery / Semple Length	Lithology Change (Depth /Pt.) or Screened Interval	Soil Decsity/ Consistency or Rock Hardness	Color	Material Classification	0 8 0 8 .	Remarks	Sample	Sample: BZ	Borehole**	Driller BZ**
		\angle			-		SEE BORING						
		/					LOGS 095B09 AND						<u> </u>
		\angle			·		11 FOR LITHOLOGY						
		\leq					To 9'	_			Ц		_
								_					Ŀ
													_
								\vdash					L
			 · 					-			\vdash		\vdash
	9	30/	.7/	9.0 XXX		GR		-					1
5 <u>-1</u>	-	30/6			V.DENSE	SR	SHALY SILTSTONE	-	BEOROCKOA"	0	0	ح	Γ
+	111		2.0			BRN	SHALY SANDSTONE	-	HEOR SURF	-			┝
+	-		┼	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-	/	INTERBEDDING	\vdash	LOST ~ I FOOT REA			-	H
C-1	-		5.8/			BRN	SHALL CHEST	\vdash	AT TOP PER DRILLER				t
5.6		43	7.8	 		GREY	SHALY SILTSTONE FE STAINS O	+	HOR FRACT ZONE Q 10' SATURATED	-			T
7.8	_	7	1.6	15.9		BLACE	,	T	ROCK BROKEN,				T
Ť	16.8			10.0		CREY		\top	V BROKEN+ SEVERE WEATHER Q 10, 13.2-13.8	1	Τ	Г	T
	1,0,0			1		1	NO BEDDING	T	MOD. WEATHER.		Τ		T
			1	1			T.D 17'	Τ	EXCEPT WHERE				T
			1						V. CROKEN				
·													
												L	
			1	_								L	
			1	_								L	\perp
<u></u>	1		1	<u> </u>									$oldsymbol{\perp}$

* When rock co	ring, enter roc	k brokene:	SS.									
"Include monitor reading in 6 foot intervals & borehole. Increase reading frequency if elevated reponse read. Drilling Area_												
Remarks:	SET	6	"TEM	P	CASING	TO	9;	POURED	GRAN	wcA7F ® ackgi	round (ppm):	U
	BENTO	NITE	ALONG	. A ^	WULUS +	- HY	DRA	FO, RES	UMFO	comince	THEU	
	ROCK	. R	EAMED	BOG	21/16 W	.5	79	ROLLER	BIT			
Converted	to Well:	· V	98	. /	No			l HoW	D #-			


Tetra Tech NUS, Inc.

BEDROCK

WELL No.:

09705

MONITORING WELL SHEET

Hole No. WES-10-520-88 DRILLING LOG 45 Navy 10. SIZE AND TYPE OF BIT + Q Wirelus 12. MANUFACTURER'S DESIGNATION OF DRILL WES 10-52C 14. TOTAL NUMBER CORE BOXES 15. ELEVATION GROUND WATER THICKNESS OF OVERBURDEN DEPTH DRILLED INTO ROCK TOTAL DEPTH OF HOLE 03.0 CLASSIFICATION OF MATERIALS 5,1/4 clay , 48r, 0.0-7.5'- Augored Solt - mod Fin, moist, Sef 8" Puc becomes ed, w/ grit Casing to 7.3' + s= frogs w/depth 7.3- 12.0' - R.R. B. f. Auger **Z**3 Refusal Sandstono, y Br, mass f, micacons, carb R.R. frieblo B. + lim const along sie Harted Coring with Hawireline at 12.0' 12.0 Runi 101 10.2 - DV

HOLE NO.

2

ENG FORM 18 36 PREVIOUS FOLLOWS ARE ORDER ETE

Hole No. WES - 10- 520-88 INSTALLATION SHEET Z DRILLING LOG PROJECT 10. SIZE AND TYPE OF BIT 11. DATUM FOR ELEVATION SHOWN 2. LOCATION (Coordinates or Station) 12. MANUFACTURER'S DESIGNATION OF DRILL . DRILLING AGENCY UNDISTURBED 13. TOTAL NO. OF OVER-BURDEN SAMPLES TAKEN HOLE NO. (As shown on drawing title and file number) 10-520 14. TOTAL NUMBER CORE BOXES NAME OF DRILLER 15. ELEVATION GROUND WATER DIRECTION OF HOLE 16. DATE HOLE WERTICAL MINCLINED 17. ELEVATION TOP OF HOLE THICKNESS OF OVERBURDEN 18. TOTAL CORE RECOVERY FOR BORING DEPTH DRILLED INTO ROCK 19. SIGNATURE OF INSPECTOR S. TOTAL DEPTH OF HOLE REMARKS
(Drilling time, water loss, depth of weathering, etc., if significant) ELEVATION DEPTH LEGEND CLASSIFICATION OF MATERIALS (Description) <u>55</u> (cont.) 22.1 Pull dapth 22.Z riping she misst Sandstons, IGr, vf-f occ rippled shaley pts - - Gradatianal 103 Sondstano, (as above) 10.2 but low wy der shale in wavey rippled 184 6d, ore burrows. Sholey w/depth Reamed hole + sof 6" Pur Casing to 32.0! 32.4 Pun 3 Highly Bur Shaley Sandstone Lydeshale, d Go Blk, carb th bol, blocky, hd coal, Blk, hd Blocky 10.1 10.2 -0.1 5 halo d60; th 60 a how bed abundant Coib inclus, oce sider

1

ENG FORM 18 36 DREVIOUS EDITIONS ARE ORSOLETE

•

				tion:				lines v.	LATION		Hole I	SHEET	52e -	
DRILL	ING LO	G	DIVI	510N				IRSTAL				OF -5 SI		
PROJECT									AND TYPE		SHOWN (TEM or	187		
LOCATION	(Coordin	-100 01	Stati	on)		 -		ا" تا	Um runt EL	ION	2110 MM (125 0)			
DRILLING								12. MA	UFACTURE	R'S DESIG	GNATION OF DRI			
HOLE NO.			rawina	title!				13. TO1	13. TOTAL NO. OF OVER- DISTURBED UNDISTURBED					
and file me					10-	52C			AL HUMBE					
								15. ELI	VATION GE					
VERTIC			NED.			EG. FROI	4 VERT	16. DA1	E HOLE	STA	RTED	COMPLETED		
THICKNES									VATION TO	P OF HO	LE			
DEPTH DR			_						AL CORE P		Y FOR BORING		*	
TOTAL DE	PTH OF	HOLE						13. 3.0						
EVATION	DEPTH	l	- 1	CLAS	SIFIC A	TION OF	MATER	IALS	% CORE RECOV- ERY	BOX OR SAMPLE NO.	(Driffing time, weathering,	EMARKS water loss, dept etc., if significat	h of	
• '	70 -	-	=+	.5	halp	- d	1:		+-					
					10/20	4	1.,							
	_			,										
	=		<u>-</u> -	(01	7.1	181 60	- 2	one						
	42-			. /.	. -	60	.)			1				
	=			2412	- 9	-	.)		426					
	=								Run 4	1				
	_								rean 9					
	=													
	44													
	=		-											
	=		-											
	_	1												
	=		-											
	46	1												
	=		-]						10.1	1				
	Ξ		-						10.2					
	_		_`											
	=		-						- 21					
	48 -		-						`					
	_		-											
	=	!	-						1					
	_		_											
	=	1												
,	50		-											
	=	1	_											
	=	- 1	_											
		1	-											
	=													
	52 —		-											
	_		-											
	=	1	_						52.8 Run 5		57.7 - Pa	11 douth		
		-	-						Run 5		,	, .		
	=	į.	_7											
	5/		-											
	Ξ	i	_											
	=	-	-											
	=		_											
	7	-	-											
I			_						103					
	56		-						103					
	56-	- 1							/ -					
	56-		-											
	56-		-		,	, , ,		. ,						
	udun		-	Bot	4.	o'h	9 5 (Coa/	. , ,					
	58-		-	Bo+	<i>y</i> .	o he	9 5 (Coa/	+01					
	udun			Bot pt:	4.	o he	9 5 (Coa/	+01					
	udun		1 1 1 1 1	Bot pt:	4.	o ho	9 5 (Coa/	+0/					
	udun		1,1,1,1,1	Bot pts	' <i>Y</i> .	o ho	9 5 (Coa/	+&/		<u>.</u>			
	udun	The second secon		Bot pt:	' <i>4</i> .	o he	9 5 (Coa/	+0/		٤			

* Charles

·<u>.</u>. •

Hole No. 4ES-10-587-85 SHEET 9 OF-S SHEETS NSTALLATION DRILLING LOG PROJECT 10. SIZE AND TYPE OF BIT 11. DATUM FOR ELEVATION SHOWN (TBM or MSL) 2. MANUFACTURER'S DESIGNATION OF DRILL DRILLING AGENCY 13. TOTAL NO. OF OVER-BURDEN SAMPLES TAKEN HOLE NO. (As shown on drawing title and file manber) 10.52C 14. TOTAL HUMBER CORE BOXES 15. ELEVATION GROUND WATER 16. DATE HOLE TVERTICAL TINCLINED 17. ELEVATION TOP OF HOLE 7. THICKNESS OF OVERBURDEN 18. TOTAL CORE RECOVERY FOR BORING DEPTH DRILLED INTO ROCK 19. SIGNATURE OF INSPECTOR S. TOTAL DEPTH OF HOLE REMARKS
(Drilling time, water loss, depth of weathering, etc., if significant) CLASSIFICATION OF MATERIALS ELEVATION DEPTH LEGEND 4 60 -Sh (cont.) elk rd blon Cost ++ Sh (05 above) w/coal ofs Sandtone 1-mGr, moss, if shale, 63.0 Run 6 + carb . - Grbr Cale ssw/ Small ungs. 9.7 Shalo Blk, th bd. stickensides fissilo, ("stick when wot"), homo _0/3 72·7 Pull dath 73.0 Run7 10.0 alt lor so lens +X.3 Highla Bur 55 Shalo vdGr-Bit + bod occ 16, 5dy pls, abundan

HOLE NO.

Š.

ENG FORM 18 34 PREVIOUS POLITICAL ARE OPEN THE

Hole No. WES-10-524-80 SHEET S OF S SHEETS DRILLING LOG PROJECT 10. SIZE AND TYPE OF BIT 11. DATUM FOR ELEVATION SHOWN (TBM or MSL) 2. LOCATION (Coordinates or Station) 12. MANUFACTURER'S DESIGNATION OF DRILL 3. DRILLING AGENCY 13. TOTAL HO. OF OVER-BURDEN SAMPLES TAKEN HOLE NO. (As shown on drawing title and file number) 10-57C 14. TOTAL NUMBER CORE BOXES . NAME OF DRILLER 15. ELEVATION GROUND WATER . DIRECTION OF HOLE 16. DATE HOLE TVERTICAL TINCLINED 17. ELEVATION TOP OF HOLE 7. THICKNESS OF OVERBURDEN 18. TOTAL CORE RECOVERY FOR BORING DEPTH DRILLED INTO ROCK 19. SIGNATURE OF INSPECTOR S. TOTAL DEPTH OF HOLE % CORE RECOV-ERY BOX OR SAMPLE NO. REMARKS
(Drilling time, water loss, depth of weathering, etc., if significant) CLASSIFICATION OF MATERIALS (Description) ELEVATION DEPTH LEGEND inclus, hd, blocky arb <u>ez. 0</u> 83.0 Bot.

St. St.

ENG FORM 10 2/

Note No. WES-10-520-88 HSTALLATION DRILLING LOG . PROJECT 10. SIZE AND TYPE OF SIT LOCATION (Coordinates or Station) 12. MANUFACTURER'S DESIGNATION OF DRILL 10-52C IS. ELEVATION GROUND WATER COMPLETED M. DATE HOLE THERTICAL DINCLINED 17. ELEVATION TOP OF HOLE 7. THICKNESS OF OVERBURDEN 14. TOTAL CORE RECOVERY FOR BORING DEPTH DRILLED MITO ROCK 19. SIGNATURE OF INSPECTOR TOTAL DEPTH OF HOLE CLASSIFICATION OF MATERIALS ELEVATION DEPTH LEGEND Well No : WES-10-576-88 Date well screen was set: 6/8/89 812.16 +2.5 Ground surface 'ه.٥ Water love ! Just Prior to setting Grout mixture 33.0 Bentonik Pellets - 35.0 500' Filter Pack Bentonite Plug - 55.0' -58.0 Well Screen -68.0 Trap 69.0 (73.0.83.0 - Benton to plug) 83.0 Boring Depth ENG FORM 18 36 PREVIOUS EDITIONS ARE OBSOLETE.

PROJECT NAME:	NSWC CRANE-SWMU-12	BORING No.:	IRMWT25	
PROJECT NUMBER:	N6878	DATE:	9-12-04	
DRILLING COMPANY:	BOWSER MORNER	GEOLOGIST:	CONTI	•
DRILLING RIG-	CWE BED YIV	DBILLER:	111A1 CH	

יייייייייייייייייייייייייייייייייייייי	LING	RIG:		CIVIE	550	AT V	DRILLER:		WALSH		<u> </u>	· .
		,			М	ATE	RIAL DESCRIPTION		·	PID/FID	Reading	(ppm
Sample No. and Type or RQD	Depth (FL) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Sall Density/ Consistency or Rock Hardness	& lor	Material Classification	U 8 C 8 *	Remarks	Sample	Sampler B.Z.	ava võlitig
			907			00.0	TOP 3" TOPSOIL					
5-1	0	84	.4/2		MDENSE	GAY	SILT-SOME ROAD	ML	DAMP > DRY	0		
1040	2	₹ ₁₂		2 _	м	UTTO	Gravel D		FILE ?	0		
S-2		64	1.6/2			CRAY MSB	CLAYEY SIVT -	ML	MOIST	0		
1045	4	916				2445	TR ROOTS			0	3 kg	
5 23	3	6/4	2/2	14.79	STIFF	1888	CLAYEY SILT - SOME		MOIST	O		
1050	ب	8/2		6		1000	SAND AND SANDSTON FRAGMENTS	SC	AMAG	0		
ST	7:	360	1/1.1	71	V STIFF M SOFT	GRAY	SAUDY SILT & WEATHERED SAUDST	1	A GIVE	0		T
1	જ	59/2		TIENE			of the angles of the		refe71±	0		
						12-4-7-5-1				0		
9.5	95	7	9.5		MOFT !	PAY	SHALLY SANDSTONE	VER	SEVERAL HORK	0		
- 94.6							(V.THIN STEEKS	1	BREAKS ALONG BEDDING PLANE	0		
			- 1 5°97		W	3 77	(10.4 Fe 10.9 Starmed	1	NEUTLY SP.	0		
.3/5.5	0	15%	5.5		MARD	13544	Jrits	To		0		
				Jisto	TEI TA	GRAY	Galactic H.	BR		0		
1130	15		人	15						0		
1140			Y		M			VBR	SENERAL HORIZ	0		
				1 N	MARD	GRAY	Greens of the st		BEDDING PLANE	0		
	1-1-1-2					: 1998		BR	CHAISE THRU OUT	0		
						1 68	Market Anglin (A)	Ť.		0		
476	2	428	10/6			3.50				0		
							A CONTRACTOR	4.		0		
] N						0	. 4	
						ztilas iv				0		丄
:					1000000	. (34) (34)		4.	24.2 > 24.6 VERT	Ø		
1210				25			2		THE HEE E 1380	0		

1210		25 N				El'WHER e 1380	
* When rock co	oring, enter rock	brokeness.					
** Include moni					elevated reponse read		
Remarks:	414	" ID HS	VA\W A	STAMMAH OT	1 2" SPOONS	Background (ppm): O
	SET	TEMP	CAS TO	9.5	A Wales		
	NX	IN ROC	K - KEAN	1 TO 36 W	5'2 BIT- 5	CPEEN 15-25 SAND 10-	<u>- a6</u>
Converted	to Well:	Yes	V	No	Well I.D. #	12 MWT25	

BEDROCK

WELL No.:

JAMWT25

MONITORING WELL SHEET

PERMIT No:

PROJECT: NSWC CRANE PROJECT No.: N6878 SITE: SWMU-12	DRILLING Co.: DRILLER: DRILLING METHO	BOWSER-MORNER WALSH DD:	BORING No.: DATE COMPLET NORTHING:	1 <u>amwta5</u> TED: <u>9-12-04</u> 1313 924,59
GEOLOGIST: CONTI	DEV. METHOD:	Surge & Purge	EASTING:	302 62 69.42
		- Elevation of Top of Casing	g:	NA
		Stick Up of Casing Above Elevation of Top of Riser:		NA 748.66
	- -	- I.D. of Surface Casing:		
Ground Elevation = 746.55 Datum MSL:		Type of Surface Casing:	steel	
		Type of Surface Seal: I.D. and Depth of Perman	nent Casing:	ЕМРТО 9.5
		(if applicable)	2"	
		Type of Riser.	PVC	
	%	- Borehole Diameter:	8/2"	Anna Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Maria Mar
		ter film i de la compara de la compara de la compara de la compara de la compara de la compara de la compara d La compara de la compara d		and the state of t
		Type of Backfill:	BENTONITE CHIPS	
T.O.R.		—Elevation / Depth Top of —Elevation / Depth Top of	Seal:	743.551 3 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
		Type of Seal:	BENTONITE	
		Elevation / Depth of Top	of Fine Sand:	736.55 / 10
		Elevation / Depth of Top		731.55/ 15
		Type of Screen:	PVC	Control of the second
to accombance	_	Slot Size x Length:	20×10	
		I.D. of Screen:	2''	
	_	Type of Filter Pack:	GLOBAL# 5	
		 Diameter of Hole in Bedr Core / Ream: 	ock: 5/2"	
	<u> </u>	derive and the second of the s		- 721.85/0 25
		_ Elevation / Depth of Botto		and the second section in
		Elevation / Total Depth o	f Borehole:	720.55/ 26
器Not	o Scale 選	\$		All the second of the second o

Page ___ of ___

PROJECT NAME: NSWC CRANE-SWMU-12 BORING No.: 12 MWTOC.
PROJECT NUMBER: N6878 DATE: 9-12-04
DRILLING COMPANY: BOWSER MORNER GEOLOGIST: CONTI

DRILLING RIG: CME S50 ATV DRILLER: WALSH

DHIL	LING	RIG:		CWE	<u>550</u>	174	DRILLER:	• .	WALSH			
					N	ATE	RIAL DESCRIPTION			PID/FID	Reading	g (ppm
Sample No. and Type or RQD	Depth (FL) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened	Soit Density/ Consistency or Hock	Color	Material Classification	U	Remarks	amplepare	iploi ibre Broto	i i
6-1		2	101	Interval	Hock Hardness		TOP 3" TOP 50LL	# .g		S		Ē
કૃં	٥	3 ₄	1.8/2		STIFF	BEN	CLAYEY SILT - TR	ML	MOIST	0	\perp	1_
1430	2	/4		2		ORAN				0		
5-2		2/2	2/2		STIFF	BRN	CLAYEY SIT/SITY	77	MOKT > WET	0		
	4	4/3				MOTT	D TR ROOTS			0	24 AM	
5 ;3		3/2	1.5/2		STIFF	GRAY BRN	SILTY CLAY-TR SAND	λĘ	MOIST	0		
144	9	54		6_	•		TR ROCK FRAGS		WEATH BOOK IN	0		
న్త్త		1824	1-5/2		STIFF	認	WEATHERED SANDSTONE	V _{BS}	DAMP	0		
1445	8	350		8'	MSOFT		2			0		
		<i>j</i> ://		IIEIN!					led£e & 1∓	Ø		
\$	9.5		9.5		MSOFT	BRN	WEATHERED SANDSTONE - TR	VBR		O		
					MHARD	,	RED BRN CLAY SEAMS (FRIABLE)		SEVERAL HORIZ BEDDING PLANE BREAKS AND	0		
.5.			55				LAMINATIONS		JUIS-SOME H20 THROUT	0	4	
·5 5.5	0	9%	5.5 _{5.5}					_	RUN (i)	0	1	
, , , , ,				14				3		0	4	
1515	15	/		15.5£	·					0		
1525			Y	11	M	1	SANDSTONE	R	16:8) HORIZ	인	1	
		//	<u> </u>	16	HARD	BPA			17.1 \ JNTS	0	_	
A is a	- 41									0	\bot	
									18' YUG 18-7 1'	0		
75/10	②	762	4.3%							0	\bot	
						CRY	SANDSONE-LAMINA	B	20.3 HORIZ JUT 20.8 TR H20	0		
	•				•	21'	STREAKS			9		
	•						22.4 COAL LENS 1/2" by COAL" THTERISCOS			0		1
				24			TO 23.8		24.3 TRHZO	Q	\bot	
550	25		人		SOFT	BAY	SANDY SHALE	BR		14		

* When rock coring, enter rock brokeness.	
** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated repons	e read. Drilling Area
Remarks: 414" ISA WI AUTO HAMMER 2" SPOONS	Background (ppm):
5ET 6" CAS TO 9-5	
NX CORE IN ROCK - REAM TO 5/21	
Converted to Well: Yes V No Well	I.D. #: 12 MM)T26

BEDROCK

WELL No.:

12MWT26

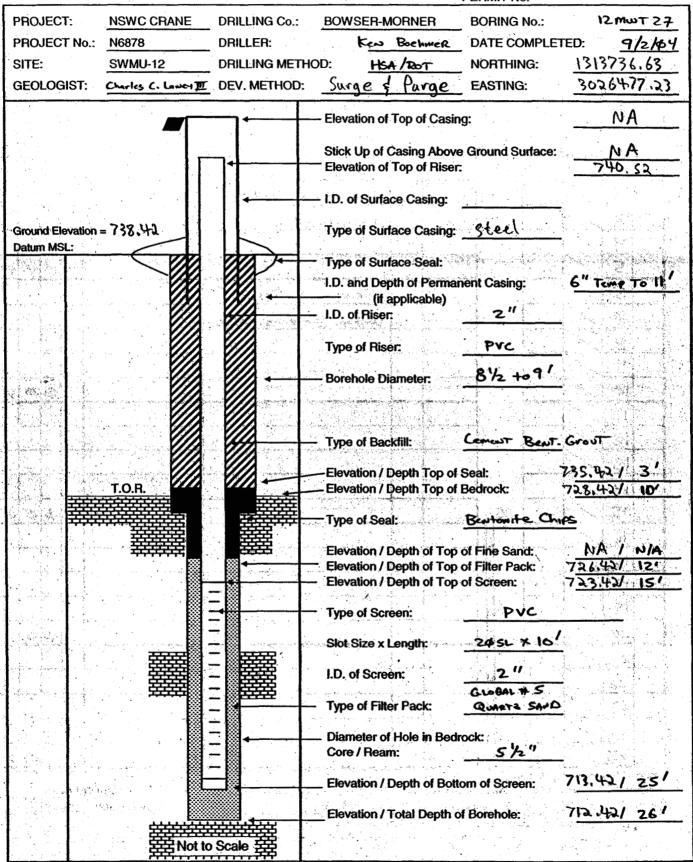
MONITORING WELL SHEET

PERMIT No:

PROJECT:	NSWC CRANE	DRILLING Co.:	BOWSER-MORNER	BORING No.:	12MWT26
PROJECT No.:	N6878	DRILLER:	WALSH	DATE COMPLET	TED: 9 <u>-12-04</u>
SITE:	SWMU-12	DRILLING METHO	DD: HSA-ROT	NORTHING:	1313638.57
GEOLOGIST:	CONTI	DEV. METHOD:	Surge & Purge	EASTING:	3025981. 12
			- Elevation of Top of Casing	g:	NA
		7	Stick Up of Casing Above Elevation of Top of Riser.		NA 743.72
		1	- I.D. of Surface Casing:	•	
Ground Elevation Datum MSL:	= 741.64		Type of Surface Casing:	steel	
Datum MSL:			Type of Surface Seal:		
			1.D. and Depth of Perman (if applicable)	ent Casing: TE	MP TO 9.5
And the second s			I.D. of Riser:	2"	
			Type of Riser:	PVC	
and the second			- Borehole Diameter:	8/2	
					437.44
			Type of Backfill:	BENTON THE	
	T.O.R.		Elevation / Depth Top of S Elevation / Depth Top of I		738.64/ 3/ 733.68/ 8/
			Type of Seal:		
			Elevation / Depth of Top		NA / NA
			Elevation / Depth of Top of Elevation / Depth of Top of		730.68/ 11/
		<u>-</u>	Type of Screen:	PvC	
			Slot Size x Length:	20 XIO"	
			I.D. of Screen:	2"	
			Type of Filter Pack:	GLOGAL#5	
		=	Diameter of Hole in Bedro	ock: 5½	
			Core / Ream:		
			_ Elevation / Depth of Botto	om of Screen:	717.68 / 24
	<u> </u>		_ Elevation / Total Depth of	f Borehole:	716.68/ 25
	Not to	Scale #		187	

Page 1 of) **BORING LOG** 12 MWT 27 PROJECT NAME: NSWC CRANE-SWMU-12 BORING No.: PROJECT NUMBER: N6878 DATE: 9/2/44 DRILLING COMPANY: BOWSER MORNER Charles C. Lancy III GEOLOGIST: **DRILLING RIG:** TRUCK MOUNT B-59 DRILLER: Ken Bochmer MATERIAL DESCRIPTION PID/FID Reading (ppm) Lithology Depth Blows / Sample U No. (Ft.) 6" or Recovery Change s Soil Density/ RQD (Depth/Ft.) C Consistency Run Sample Remarks Type or (%) or Color **Material Classification** S NOD No. Length Screened Rock Interval Hardness ١ Sec Boring Log 0000 Z 12 MWTZS FOR 3 LITHOLOGY ч 5 ØØ 6 Boring was Drilled 7 Without Sampling /CORI ଞ 9 ΦΦ IΦ Top 11 12 松的 医物质二二素 13 3.7 30.79 14 15 do do 15 16 17 18 19 2\$ Ø Ø 21

Remarks: 6" Temporary Casing Set to 11 bgs. Background (ppm): 0	" Include moni	ring, enter rock tor reading in 6	foot interva	als @ borehole					d reponse	e read.		Backe	Drillin			Ø	
---	----------------	--------------------------------------	--------------	----------------	--	--	--	--	-----------	---------	--	-------	---------	--	--	---	--


BEDROCK

WELL No.:

12 MINT 27

MONITORING WELL SHEET

PERMIT No:

Page ___ of ____

PROJECT NAME: NSWC CRANE-SWMU-12 BORING No.: 12 mwT 33
PROJECT NUMBER: N6878

DATE: 8/31/94

PROJECT NUMBER: N6878

DRILLING COMPANY: BOWSER MORNER

DATE: 8/31/44

GEOLOGIST: Charles C. Laney +++

DRILLING RIG: Truck mount B-59 DRILLER: Tom Boehmer

	AILLING NG.							PID/FID Reading (ppm)								
Sample No.	Depth (Ft.)	Blows / 6" or	Sample Recovery	Lithology Change	N	AIE	RIAL DESCRIPTION	U	· .	PID/FIC	Rea	ling (ppm)			
and Type or RQD	or Run No.	RQD (%)	/ Sample Length	(Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	S C S ·	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**			
VV - U - XV	1									ø						
	2						See Log 12 MWT25			ф			L			
	3						FOR LITHOLOGY FROM			ø			<u></u>			
	4	\angle		.Atamena			φ-25'bas-		and sometiment of the second second second	q	1	62%				
	5			+ wick mid-	Ababian j				P. day	ф						
Mark 1	6	\angle		100						ø	4	< 5				
	7	/_								ø						
	8	/								ø						
	9			and March			***			ø	14					
	lφ	/	14656	and the second					to the second second second	4	Her A.					
	11			e de caración de la composição de la com						ø	, ,,,	**				
	12	/_								ø						
\$ 5. \$ 5. \$ 5.	13	$/\!\!/$		- America						Ø	2 m. s.y					
	14	/				<i>\$</i>				Ø			_			
, a 14 1 2 4 1 24	ıs			same, the first t		3,4%	enthania etaeta		A A	ø						
1.6	16		· 第5章			***	100	_		ø	70.2	A. A. C.				
	17							_	*	ø		2	H			
	18		***		e e transfer a lange	187	a prima and a state of the spirits and a state of the spirits and the spirits	-		Ø		- 1	-			
	19					_		┝		Ø		: <u>:</u>	├			
	Zø		-	special for a const	e interese de la companya de la companya de la companya de la companya de la companya de la companya de la comp			-		9	_		L			
	21					-3	e 1980	-		Ø		-	-			
*	22		├-			-		-		8	-		\vdash			
	23		 			\vdash	CONTRACTOR OF STREET	-	<u> </u>	Ø			-			
	24					-		1				: (\vdash			
-	25			1.5				1		ø			<u> </u>			

	Mr. J. Carlot	190		19 r	2 2 11	
*	When	mck	conna.	enter n	ock bro	keness.

" In	clude monito	or reading in	6 foot intervals @ borehole.	Increase reading frequency	f elevated reponse read.
		•			

Remarks: Temporary Casing Scr To 10.5 695

Drilling Area
Background (ppm): 95

Converted to Well: Yes	X	No	Well I.D. #:	E & TWM SI	
			_		

DRILLING RIG:

BORING LOG

	· ·	
PROJECT NAME:	NSWC CRANE-SWMU-12	BORING
PROJECT NUMBER:	N6878	DATE:

DRILLING COMPANY: BOWSER MORNER

GEOLOGIST: Truck MOUNT 8-59

12 MWT 33 No.:

8/31/44

Charles C. Lawer III

DRILLER: Tom Boehmer

Sample	Depth	Blows /	Sample	Lithology		IATE	RIAL DESCRIPTION	ا ا	and the second	PID/FII) Rea	ding ((
No. and Type or RQD	(Ft.) or Run No.	6" or RQD (%)	Recovery / Sample Length		Soil Density/ Consistency or Rock Hardness		Material Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	
	26										2		•
	27												
	28												-
	29										3,		
	3 ¢			.24			Book from Adams and San Francisco	186	****	e ele	14.7	· De	
	31										ý		
7	32												
, X	33											,	
	34										ent of		
100	35												
	36	\angle				N+13		143			-tas-2		
	37	/_								82	3. 4. 2 4. 44		
	<i>3</i> 8	/											
	39	$/\!\!-$											
*	40				MEDIUM	conf	SANDSHONE			eric N	Neces	Ŀ	-
i keriy	41		H-	· ·	HARD	GRAY		-	v. BR.	P	selv era in	\vdash	-
	42				31	11		-		9	_	_	_
	43	\leftarrow			SOFT	BACK "	COAL	1_	TRACE PYRITE	ø	-	_	-
C94	44	200	91/	`	<u></u>		"	-		ø	\vdash	\vdash	-
14		65%	9/91		HARD			_			1000	 -	-
	46	$ \leftarrow $	$\vdash\vdash$	1	31	6e4/	SAMOSTRIJE	-		9	\vdash	\vdash	_
	48		-		menum	Dek	CLAISTONE	-		ø	\vdash	\vdash	-
9 446			+	1	SOFT	GRAY	CCMSTODE	+		ø	H	\vdash	-
66.49			┢	<u> </u>	Mesium	11		-	g) or by	+	H	\vdash	•
	50		er rock br		Harri	<u> </u>	SANDSTONE INTEREST.		Biocoy		<u> </u>	L	,

** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Permanent Casing Set TO 35.5' bgs. Remarks:

Drilling Area Background (ppm): **Ø**

Converted to Well:

Yes

No

Well I.D. #:

12MWT33

F	1	Tetra	Tec	h N	IUS, Inc		D.C			Pag	<u> </u>	3 ,	of	4
Ċ.		1000	100	/11	1 00, iii		RC	PRING LOG		i ag	E <u>-</u>	<u>_</u> '	וכ	_L_
		NAM				CRANE-	SWM		lo.:	12 MWT 33				
		NUM			N6878	TO MACOON	TE E	DATE:	эт.	9/2/44				
		•	PAN	IY:		ER MORI		GEOLOGIS	SI:	Chirles C. Lan		II_		
DUIL	LING	RIG:			Truck	MOUNT		age of the same of		Tom Boehme	_			_
Sample	Depth	Blows /	5	nple	Lithology	M	ATE	RIAL DESCRIPTION	۱	P	ID/FIL	Read	ling (ppm)
No.	(Ft.)	6" or	Reco	very	Change	Soil Density/		.*	U					
and Type or	Run	RQD (%)		/ nple	(Depth/Ft.) or	Consistency			С	Remarks	ple	ar B2	ejo	BZ*
RQD	No.		Ler	gth	Screened Interval	or Hock	Color	Material Classification	S		Sample	Sampler BZ	Borehole**	Driller BZ**
						Hardness					"	Sa	ŭ	ă
			_	T		medium						. :		
Ŀ	51					HARA	Durk Gady	sampsfore interacted wy surstane		A lot of Bouling	Ф			
	52					- 4	"	8.	10 T	"	ø			
	53	\angle					٠,				φ			Ŀ
By	54	849	9.5	4		•	م				4		/. - t	
10	SS	16	1	10	. T.	11	1	Asset to the second of the sec			ø	nend.	*	47
	56	i San e	اد راد د کاری			"	,,				ø	e e	eved in	
	57					41	1	1.44			ø		and the second	
	S8					n	1,	y			φ			3 to 3 to
ønø			1	_		٦	11				ø		27/4	
	6φ	\angle	L		e amplitude is en del	b	V	SANDSIENE INTERPEDIED		V. B. R. Faom 61-62!	φ	a de como de		
	61					n	!)			Fam 62.5-63/	ф	¥.	ik ra	
	62		L			61	(1			Rest . Blocky A lot or Bonding	ø			15 25 25
	63	/		_		11	y	4		•	φ	,)		
44	64	46%	9	1	aya jay	11	11	•	<u> </u>		ø	· Š		
	65		1	2		11	11	4			4		X	9
	66			L		- 11	11		<u> </u>		ø		7 Avenue	
	67		L	L	And Super S	11	11				ø			
	68	\angle	igspace			11	"_			1	ø			
645	69		4	1		4	11				ø	N.		
	79					4	Ŋ	- 14		Brocky, Alotor Bond 189	ø		2.0	
	71					SOFF	B-Ack	COAL (1017 -> 72/)	1	V. B. R.	Ø		٠.·	
	72					н	11	u 4			φ			
	73					Medium Hourd	Busct			"	ø			
44	74	4196	9/	,	74_		Bork	SANDSTONE INTERPOLLEW/ SILTSTONE		trocky.	Ø			

*When rock coring, enter rock brokeness.

"Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read.

Remarks: C-2 Core fell MTB Hole once & Hid to Be Retrieved

and the second of the second o			And the second s	
Converted to Well:	Yes 🗙	No	Well I.D. #: 12 M	wT33

11

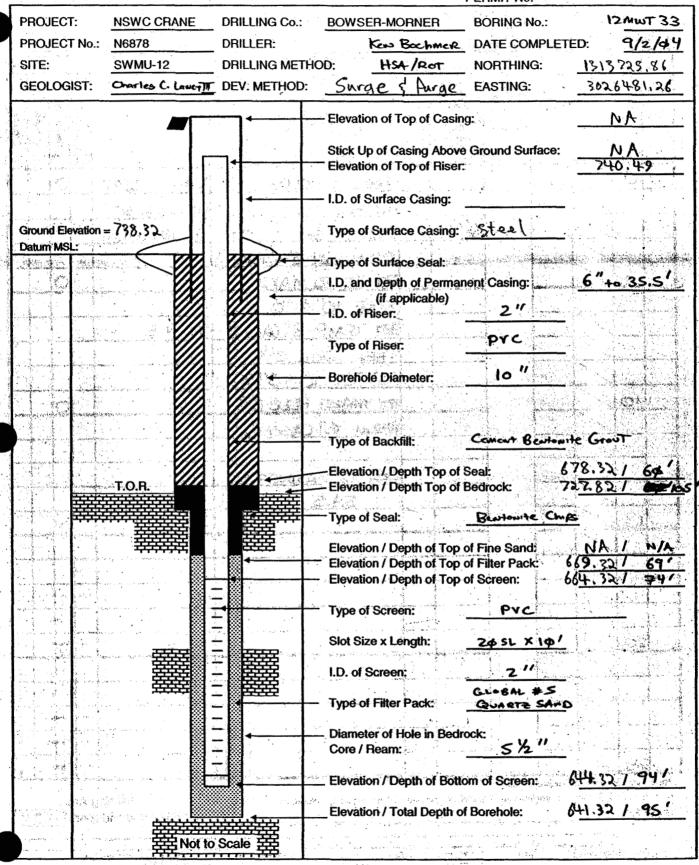
DDA	IECT	NAME		NICINIC	CRANE-	CIMINA	U-12 BORING N	٠.	12 war > 2	12 mw + 33						
		NUM		N6878	CHANE-	SAAIAI	DATE:	0	9/2/04	<u>, </u>			_			
					ER MORI	NER	GEOLOGIS	ST:	Charles C. L	اندم	b) "	TT -	_			
		RIG:			ck Mova				Tom Brea			_	_			
							RIAL DESCRIPTION			PID/FIL		dina	=			
Sample	Depth	Blows /	Sample	Lithology	10	IA I E	HAL DESCRIPTION	υ			T T	Jing (ï			
No. and	(Ft.)	6" or RQD	Recovery /	Change (Depth/Ft.)	Soil Density/			S			28		I			
Гуре от	Run	(%)	Sample	or	Consistency	Calar	Material Classification	C	Remarks	흲	8	90	1			
RQD	No.		Length	Screened Interval	or Rock	Color	Material Classification	S		Sample	Sampler (Borehole**				
					Hardness						Š	200	١			
			* I 's		medura	D., K	SALD STONE INTERBEORD W	<u> </u>		 -	1_		ļ			
	76				Had	Gay	SILTSTONE	·	Brocks	ø						
	77			N	٠,	11			4)	\$						
	78			1 11	4)1	•	·	80	ø			1			
PZIØ	79				1,	11	15			99	(Dec.)		I			
13.4	84		Y	2 4 19		11			BLOCKY -> Brokeniyo	674	- 20		١			
	81			N	n	95			Francis afferences	ø						
	82				ч	4				ø						
	83				N	•1	•		**	Ф			1			
	84			1	14	11			1	ø	(A)		1			
42/	85	Vac	95/		W Zin	-11				ф	18	1	1			
100	86	429	110		•	11			•	4	1		I			
	87				1)	1)				0			I			
	88				¥	1)	n territoria.			à		Section 200	1			
5 234	89				"	1)	J		4	ø			1			
	90		Y		į.	[1	2. 3.5			ø			1			
	91				11	11	ļ. , , , , , , , , , , , , , , , , , , ,		4	φ		4				
1.8/	12	38%	4.9		11	¥r			10	ø	2004					
75	93		10		11	11	9		W S	ø		****				
1344	44			945	14	1,	G		W. J. Carlot	ø		ક્	100			
	95		, in									\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
			4				BORING TERMINATE	-	├	1			1000			
****			7.1							L						
										L						
					111111111111111111111111111111111111111							190				
	a															

"Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated repense read.

Remarks: Hole Remark + 95 bes.

Yes

Converted to Well:


BEDROCK

WELL No.:

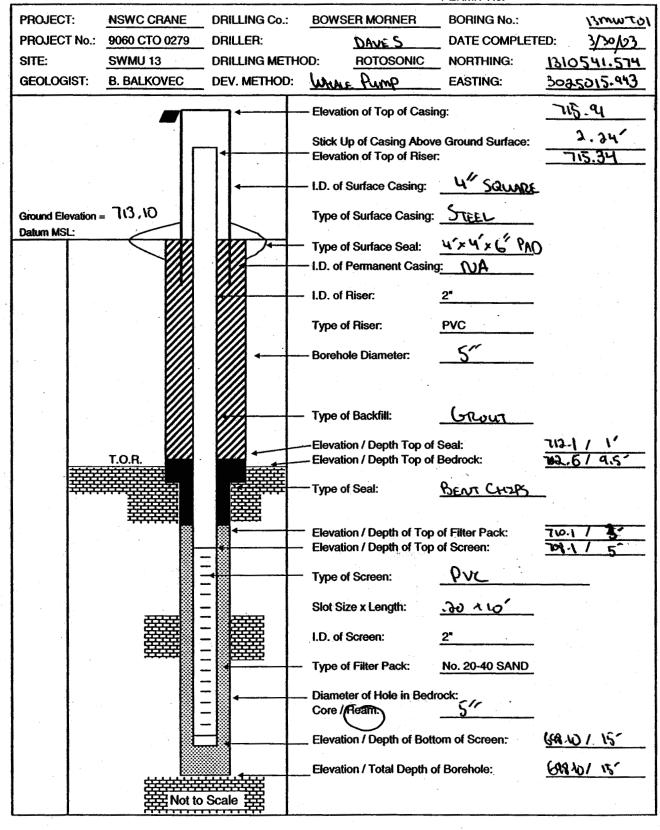
12MWT33

MONITORING WELL SHEET

PERMIT No:

	U	Tetra	Tech NU	JS, Inc.		B	ORING LOG		Pa	ge _ <u>/</u>	of		-
		NAM		NSWC (BORING NUME	BER:					
		NUM			TO 0279		DATE:		<u> 3/30/03</u>				_
		COM	PANY:		R MORNE	₹	GEOLOGIST:		BOB BALKOVEC				
DHIL	LING	RIG:		ROTOS			DRILLER:	-	DAUES.				=
Camala	Depth	Blows /	Sample	Lithology		MATE	RIAL DESCRIPTION	U		PID/FID	Readin	g (ppr	n)
Sample No.	(Ft.)	6" or	Recovery /	Change				s			N		
and Type or	or Run	RQD (%)	Sample Length	(Depth /Ft.) or	Soil Density/ Consistency			C	Remarks	2			
RQD	No.			Screened Interval	or Rock Hardness	Color	Material Classification	S		Sample	Sampler BZ Borehole**	Driller 871	
					HOUR HAILMESS						o a		
				1				-					
	1	<u> </u>		$1 \setminus 1$		BU	7 TUP SUZE	m	5" 0-6"	00	\vdash	+	4
	ع					1	7	11				\perp	╛
	ን		·	-	004	Year	J-6 CLAYER SZUT	Ш					ı
	4					UR				\prod		T	1
51	5		49-	1 1 17 1		U.		H		11		1	1
1025			5	∤ ∤		YELLAR!	<u> </u>	H		+	- 10	0 8	읙
	b	/_		19		ויינייני	A CLAYEY STUT	9		0.0	$\vdash \vdash$	+	4
	7			सेन्स न	mist	820	6-9.5 STON SAND	Sm	WEATHERED S.S.	411		1	1
	જ					YEU		Π		Ш		\perp	
	9			- -		١١		1	L				1
2:2	10		4.81		+44.0 00K	J	5 SANDSTONE	ex	Roux e 9.5'	V			-
Y	11					LT (DAY)	WLEG OUS	li				Т	1
	13					1	S" REAM TO 15"	Π			П	T	٦
P-1	13						SAMPY MATERIAL	\prod				\top	٦
	14			1		1		H				T	٦
	15					OK	SHILL WARELINE	II.		1		十	┪
4	13		 	7.0		YAR		1		+-	\vdash	\dagger	┪
			 	15"		-	WELL SET @ 15 2" PUC	╁		-	十	+	٦
<u> </u>		K		4		 	Surgeongo 5-15" SAMO TO 3"	╀			\vdash	+	4
		<u>/</u>	ļ	4		<u> </u>		-		4-	┞╌╂╴		4
<u> </u>							BENT TO 1-				\sqcup	- -	_
											Ш		
					78.4					1		\perp	
			1	1							Π		
				1 .							П	T	
			1					T			\sqcap	十	
* When	n rock c	coring, ent	er rock brol	ceness.	. 	1	I	_					
			ng in 6 foot	intervals @ b	orehole. Increa:	se readi	ng frequency if elevated reponse read.			ling A			
Hem	arks:	:		·					Backgroun	u (pp	 m):[(<u>ა.</u> ე	<u>لــ</u>
Car	corto :	d to We	oli:	Yes			No Well I.	D #	Brutoi				_
COU	verte(u 10 77	#11.	162	X	_	AAGILI	J. #	. <u>15100 (51</u>				

Tetra Tech NUS, Inc.


BEDROCK

WELL No.:

13mw TOI

MONITORING WELL SHEET

PERMIT No:

Tetra Tech NUS, Inc.

Converted to Well:

Yes

PROJECT NAME: PROJECT NUMBER: DRILLING COMPAN' DRILLING RIG: Sample No. (Ft.) 6" or Record RQD Type or Run No. (%) 1515 5		TO 0279		ROBING NUME					
No. and or RQD San Type or Run No. (%) IS 15 5			3	DATE: GEOLOGIST: DRILLER:	BEH:	13mw7U3 3/30/03 BOB BALKOVEC DAVE S.			
15 IS S	very / Change aple (Depth /Ft.)	Soil Density/ Consistency or Rock Hardness	Color	ERIAL DESCRIPTION Material Classification	∪ % C % +	Remarks	PIO/FIC	Sampler BZ Borehole**	
		•	YEAR OR	SEE BAUTUL FOR LITHWOODY STUTY MATERIAL		5" 0-15"			
1520 10		/	→	SAMOY MATERIAL					1
1530 (0)									
			1	SANDY MANERALL		HARDER & LO			+
rs 15	7.0.		J.	STAX MATERIAL WELL SET & 15' 3"PVC					‡
	15"			SURLEWED 5-15' SAND TO 3' BENT TO 1'					
*When rock coring, enter rock "Include monitor reading in 6		orehole, Increas	se readin	ng frequency if elevated reponse read.		Dril Backgrour	ling A		

No

Well I.D. #:

Brows

BEDROCK

WELL No.:

Boom

MONITORING WELL SHEET

PERMIT No:

PROJECT: **NSWC CRANE** DRILLING Co.: **BOWSER MORNER BORING No.:** Bowwio3 PROJECT No.: 9060 CTO 0279 DRILLER: DAVE S. DATE COMPLETED: SITE: **SWMU 13** ROTOSONIC **DRILLING METHOD: NORTHING: GEOLOGIST: B. BALKOVEC DEV. METHOD:** WHALE PLAMP **EASTING:** 3024891.661 Elevation of Top of Casing: 771.60 2.76 Stick Up of Casing Above Ground Surface: Elevation of Top of Riser: I.D. of Surface Casing: 4 SOURCE Ground Elevation = 718.34 Type of Surface Casing: Datum MSL: 4'x4'x6" PAD Type of Surface Seal: I.D. of Permanent Casing: I.D. of Riser: Type of Riser: PVC Borehole Diameter: Type of Backfill: GROWT Elevation / Depth Top of Seal: 717.34 / T.O.R. Elevation / Depth Top of Bedrock: BENT. CHIPS Type of Seal: Elevation / Depth of Top of Filter Pack: Elevation / Depth of Top of Screen: Type of Screen: Slot Size x Length: I.D. of Screen: Type of Filter Pack: No. 20-40 SAND Diameter of Hole in Bedrock: Core (Ream: Elevation / Depth of Bottom of Screen: Elevation / Total Depth of Borehole: Not to Scale

		•
•	4	
1		
L		· J

Tetra Tech NUS, Inc.

BORING LOG

Page / of 3

PROJECT NAME: PROJECT NUMBER: DRILLING COMPANY:
DRILLING RIG:

Crane NSWC

BOWEER MORNER

BORING No.: 13 MWT28

DATE: GEOLOGIST:

FRED W MAMSEN

DRILL	LING	RIG:	فرا دراه جارو	Koro -	Sovic		DRILLER:	<u></u> -	10H KEIF	R	*		_
	1		43.		M	ATE	RIAL DESCRIPTION		4,4	PIDA	FID Re	ading	9 (4
Sample No. and Type or RQD	(FL)	6" or RQD (%)	Sample Recovery / Sample Langth	Change Change (Depth/Ft.) or Screened Interval	Spill Density! Consistency or Rock Hardness	Color	Material Classification	U S C S ·	Remarks	Sentple	SamplerBZ	Borehote**	
•	16			XXXXX				Sign	DRILLENTO				1
•	17		ser vigo	MANAX	1				0-175w0spc	1			1
Ψ	18		3.00	TOPOF				t	WET BRASK	1			1
	19			BORK	SOFT	DK.	YEL BAN MUDSTONA W COCK FRAG. MOTTLED GREY	ver	+ E 3 200 0+			1- 1- 1-	1
	20			A	, विक्तिक्षा है। इ.स.च्या	1 2 2	MOTILEO CUEL		MUTTLED LRRY W-20 WEATHER				1
					SOFT	BLE	COAL, BRITTLE	1 Bal	BORK COAL 7/8	10	8	3. ·	1
s-'N'		090	een en skriving. Vojangij gel	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	MED	WE	CREY SANDSTONE,	BK		Ť			1
i						725	and the same of th	1		1			1
1			est, a grand land		MED	ME	o gret sampsione	YBA		, .			
1_	25				SOPT -								
							V.THIN BEODED						I
<u>_</u>		I	700			*		å,		8			
					MED		W.		*	4			
3	~				HARD	MED	TO LIGHT GREY. SANDSTONE	BR					l
\perp	<u>30</u>	H.					IRRECULAR LENG.					·	l
							FOLL VULSE!						l
2		500					HOR. FRAC.			9			L
- ```		14		6, 3						;;			k
		4		11				\coprod					Ŀ
17.5	<u> 3S</u>	4					*.47				4		L
			75					\coprod		(2)	\perp	_	
		4	10	· A · A · : ! \(\) . \(\)		\perp		4			_	_	L
								_	ene. Historia		_	4	
				- 1			*	1		\sqcup	1	_	_
火点	40												

11110111001100	ing, one rook broken	· · · · · · · · · · · · · · · · · · ·	•	4.7.3	*** V	
** Include moni	tor reading in 6 foot inte	ervals @ borehole.	Increase reading frequency	if elevated reponse read.	D	rilling Area
Remarks:	CASING	TO 38.	5, 68 Myson	en 4 li ob	Backgro	und (ppm): 👽 🔊
)						
				2		
Converted	to Well:	Yes	No.	Well D	# 12M4/T28	

Converted to Well:

Yes

		Tetr	a Tech N	IUS, Inc.	E	BOR	RING LOG					_	of _	2
PROJ	ECT	NAME:	ER:	Crane N	0		BORING N DATE:		13 mw	?	8			_
	2.00	COMP	ANY:	BOWSE			GEOLOGIS DRILLER:	ST:	SIGNE	<u>r</u> _	<u></u>		say, iv	<u>:</u>
DRILL	ING	HIG:	1	<u>ver</u>	M-SONI		RIAL DESCRIPTION	·	S) ICITE				: i i .	-
Sample No. and Type or RQD		Blows / 6" or RQD	Sample Recovery/ Sample Length	Lithology Change (DeptivFL) or Screened interval	Soft Clensity Consistency or Rock Hardnes	Color		U S C S •	Remark		Semiple	Sampler, BZ	Borehole	Della trans
N.	38				7.55	DACK		-,	Co-w		3		-	11 2
Y			, ? .		HAPED WE	HOY	CRET SHIPSTONE CITY		GREY N/BA	LLAMS	00			Ø.
							BLACK LAMS OF SILT					1		* (
				3 4				4				1	,	
				1 3/1/1	VERY HARO	6144	SANDSTONE TOTAL LENGS							
į.	1			We t	2000			? ;				á i		
	Marie Canada		man propie	1437	The second second second		The second secon				Jac. H	sea extra	*	(
			**************************************		HARO	BUCK	SILTY SANDSTONE GREY 3.5. W BLACK LAMS OF					10 A 40		4
						2504 65	incleasing silt			•e	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	/41732 1		7
di				-,		of Courts P	The Control of the Co							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	48	100	9/10		and the Market of the season of the						00		* (F)	9
Y	ent form			: 4	and the second s				Section 1 Section 2		a	. island	***************************************	4
					a see a firm, new .	1	1				***		4 tr da.	-1
			7, 7, 7, 10	7	e and the second second	10 me na naga 11	7		1			** (4) A		
	3.		and the same of th	1	A Section (Section 4)				**************************************		,	7. A	1	
					2. 22.76					X	100 m			4.20.00
	•		Make of the second second	amarka in a fair		Artista area	The second of th		are polyrical and are set to enterent year			10 mg 12		*
	1		# P	1.	gray range wa		The company of the particle of the company of the c	^						· Same
	***			1	To the first of	1					Ç	-		- 1
02	4		entre inspire du	7							2			1
	58	5%	10/10			y					10			2
Y			e de la comp		MED SOFT	BLAK	BLACK SHALE THINLY LAMINATED		FISSILE " Third Lams		430	· · · · · · · · · · · · · · · · · · ·		STU-
				===	, and a stage of							\bot	1	1
	-			N. Jakir	HARD	GRPY	SILTY SANDSTONE				2 1	1		
			1 4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$MJ+	-	11974	Paragraphic Control of		*			•	.]	(9-7) }
	. L		on Vara ratio		MET) SOPT	BIAK	SHALE SHIT		PISSILE THIN LAWS	g Grand		-	3	-
When ro	monito	r reading i		rais @ borehole			uency if elevated reponse read.	1 A. 1	iga - De 1 110 de 1110 de 1110 de La compansación de 1110 de 1110 de 1110 de 1110 de 1110 de 1110 de 1110 de 1110 de 1110 de 1110 de 1110 de 1110	Drilling				7

No

Well I.D. #: 13 MWT

lt	Tetra

Converted to Well: Yes

Tetra Tech NUS, Inc.

BORING LOG

Page **3** of **3**

13 MW Crane NSWC **BORING No.:** PROJECT NAME: 9060 DATE: PROJECT NUMBER: **GEOLOGIST:** DRILLING COMPANY: BOWSER MORNER KEIFER DRILLER: ON **DRILLING RIG:** VERSA-SONIC MATERIAL DESCRIPTION PID/FID Reading (ppr Lithology Sample Depth Sample Ü (FL) Recovery / Change No. and 6" or S RQD (DeptivFt.) Sample Type or or C (%) Remarks Run 10 Color S pr Rock Hardr No. Interval: 63 K+3 BLACK, BRUILLE SILTY SANDSTONE FISSILE - THIN LAWS BR SM DECREASING SILT Bo YERY GREY GREY SANDSTONE MEDSUA BAC THIN LAMINATIONS 65 SANDSTONE (VARUED) HARD MED SOPT BUKK SHALE THAN LHIMS FISSILE- THIN screen se @ 98'->78' SANOSIONE VARIED) BLAN HARD When rock coring, enter rock brokeness. Drilling Area *Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. --Background (ppm): 0.8 Remarks: 1130 hole is blown out + Has level = 86

No

"Well I.D. #: 13 MWT 28

WELL NO .: 13 MWT 28

MONITORING WELL SHEET WELL INSTALLED IN BEDROCK

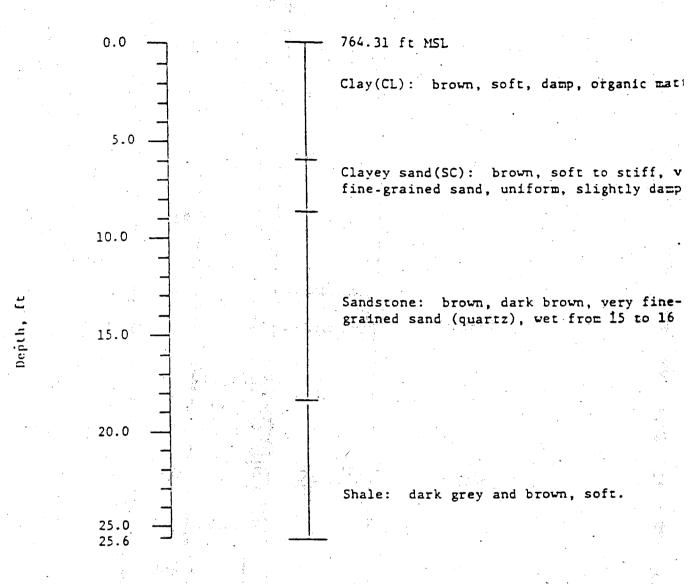
PROJECT NSWC CRANE LOCATION SWMU 13	DRILLER JON KENFER
PROJECT NO. 9060 BORING 18 mor 28. DATE BEGUN 11 19 703 DATE COMPLETED 11/19	
DATE BEGUN 11 19 7 63 DATE COMPLETED 11/19	
FIELD GEOLOGIST SCON GRIER	DEVELOPMENT BALLIFIED METHOD SURGE PUMP
GROUND ELEVATION 703.54 DATUM WAVE 88	METHOD SURGE/ PUMP
ELEVATION /HEIGHT OF	TOP OF SURFACE CASING 105.53/ 2
to the state of th	P OF RISER: 705.55/2.
ELEVATION/HEIGHT TO	P OF RISER:
TYPE OF SURFACE SEA	e <u>concrete</u>
	A Company of the Comp
1.D. OF SURFACE CASI	4 44 000
E L.U. OF SURFACE CASI	NG: 13 TOOLS
	. 16
	11 days to 38.5
Isolation cas	ING 6" DIA. DEPTH.
RISER PIPE I.D.:	2"
TYPE OF RISER PIPE:	25 PVC
	The second secon
TYPE OF BACKFILL:	ZENTANITE
TIPE OF BACKFILL:	CATONIE
ELEVATION/DEPTH TOP	OF SEAL: 700.54/3
TOR LINE PLEVATION / DEPTH TOP	OF BEDROCK: 685.04/18
TIPE OF SEAL: BOTH	
CHOS GET CE	
	75
ELEVATION/DEPTH TOP	of sand: 628.54, 10
A Committee of the Comm	
ELEVATION/DEPTH TOP.	OF SCREEN: 62554,78
TYPE OF SCREEN:	PVC
是一世 SLOT SIZE x LENGTH:_	
- LD, SCREEN:	- 20 slot
TYPE OF SAND PACK: (QTZ MED SHAD
: 1. 1 · · · · · · · · · · · · · · · · ·	
- DIAMETER OF HOLE IN	
- DIAMETER OF HOLE IN	BEDROCK:
CORE/REAM: 4"/	
CORE/REAM: 4"/	5"
CORE/REAM: 4"/ ELEVATION/DEPTH-BOTT	5" OM SCREEN: ~ 615,54 / 88
CORE/REAM: 4" /	OM SCREEN: ~ GIS.54 / 88 OM OF SAND: GIS.54 / 88

1 ...

Tt.	etra Tech NUS, Inc.
-----	---------------------

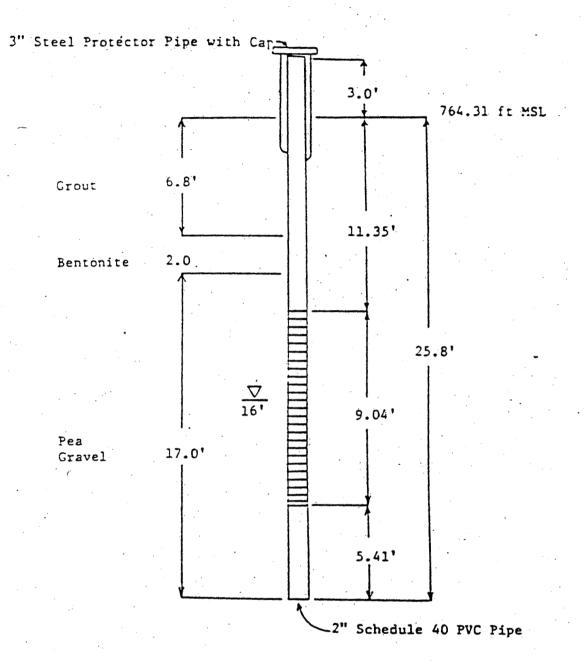
Page	of I	
------	------	--

\subseteq					BOHING LO	<u>u</u>		0
PROJI PROJI DRILL DRILL	ECT N ING C	UMBE OMPA	R:		DIAD MORNER	BORING No.: DATE: GEOLOGIST: DRILLER:	16 MWT 11-8-0 M.G. CO J. WAG	3 CHRAN
Sample No. and Type or	Depth (Ft.) or	Blows / 6" or RQD	Sample Recovery / Sample	Lithology Change (DepttVFt.)	MATERIAL DESCRI	PTION US	Damada	PID/FID Reading (pp


					M	ATEF	IIAL DESCRIPTION			PID/FI	D Rea	ading	(ppm)
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (BeptivFt.) or Screened Interval	Soll Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S	Remarks	Sample	Sampler BZ	Borehole.	Driller BZ**
SI		4/10	1.2/		MDENSE	GR	SAND + GRAVEL	SP	FILL DAMP	0	0	0	
31		4/			MUDENSE		SHIOD FORMULE	JP.	FILL TO	۲	۲	۲	2
	2	37	2.0			DK.		1 1 2 1	FILL, PAMP.	-	-	-	\vdash
SZ		24	1,6/	artis i	LOOSE	ORN	CLAYEY SILT	51	IN SPOON, GREY	0	0	0	9
	4	35	2.0			<u>.</u> 2:			MOTTLING	_			
53		32	.41		V LOOSE	DK. BRI.	SILTY CLAY	sm	GREYMOTTING,	0	0	0	0
	6	3/2	2.0		10 mm								
54		2/5	.9/		LOOSE	DK BR	SILT,		RED-ER SS FRAG	0	0	0	0
-	8	1827	2.0	8.0	1000	0.						۲	Ħ
-	0	115	0/	11 y 5 X	V DENSE	C P	C		DAMP. LOOKSMATE	0	0	_	
55		50/5	1 (1)	9.0	A DEWSE	<u> </u>	SICT			9	9	0	0
1	10		1.9		\$ 100 PM	RD			FE STAINED	_		_	
عكر		5%51	.3/		Villar	BEN	SANOSTONE			.6	0	6	0
	12	/	04			P.U		· .				_	Ш
57		50/1	.1/			Ben	SAUDSTONE			6	6	6	.0
	14		11	J. 1									
58		50/20	. 1/.		3. V . V	GR BR	SANPSTONE			1.3	1,3	1.3	1.3
	No		. 2										П
0	,,,	11/5	.61		,	GR			NEMMERED, SAT	3.B	12	12	/ 2
<u>59</u>	18	50/31			· · · · · · · · · · · · · · · · · · ·	-	SANDSTONE		BLACK STREAKS	0,0	1.5	1/2	4
	10				17 s.1	RD			INSPL				\vdash
510	- : .	50/5					SANDSTONE		SHALY, FESTAINING	.9	.9	.4	.9
	20	1701	.5										
511		50/3	,2/			GR.	SHALE		DAMP	0	0	0	2
	22		-3				west side						
312		50/3	.3/			GR	SHALE		UF LANS IN WHITE	0	0	0	6
	24		. 3		A AK W		TD 24'						
				na.	4 4 6.43		1 194.0						
								بسينا	\		لبصا		

 When rock cori Include monito 	-		ole. Increase	reading frequency if elevated re	eponse read.	Drilling Area
Remarks:						Background (ppm): -
	Pio	DRIFT IN	MEAS.			
Converted t	o Well:	Yes		No	Well I.D. #:	16MNT17

BEDROCK MONITORING WELL SHEET WELL INSTALLED IN BEDROCK


ietra iech NUS, Inc.		
PROJECT CRANE	LOCATION CRAVE IN	DRILLER BOWSER-
	BORING 16 MWT17	DOILLING MORNER
	DATE COMPLETED 11-8-03	METHOD HSA
FIELD GEOLOGIST M.G.COC	HRAN	DEVELOPMENT BALLER!
GROUND ELEVATION 764.79	DATUM NAVD 88	METHOD SURGE
A	ELEVATION/HEIGHT OF TOP OF	SURFACE CASING:766,54 1. 7
	ELEVATION/HEIGHT TOP OF RIS	ER: 76653/47
	TYPE OF SURFACE SEAL: CO	UCRETE.
	I.D. OF SURFACE CASING: 4"	X Y' SQ. STEEL
-	DIAMETER OF HOLE: 8 /2	
	RISER PIPE I.D.: 2 "	
	TYPE OF RISER PIPE: PVC	SCHEOULE
	TYPE OF BACKFILL: CETO	O DURE
	GOLD MEDIUM	
	ELEVATION/DEPTH TOP OF SEAL	. 761.79 ₁ 3
TOR	ELEVATION/DEPTH TOP OF BEDF	the second of the second of
	TYPE OF SEAL: CETCO	
	ELEVATION/DEPTH TOP OF SAND): 7 <u>52.79/12</u>
	ELEVATION/DEPTH TOP OF SCRE	
	SLOT SIZE x LENGTH: 020 I.D. SCREEN: 2"	
	TYPE OF SAND PACK: _ C LO	BAL MEDIUM
	SAA	10 1. · · · · · · · · · · · · · · · · · ·
	DIAMETER OF HOLE IN BEDROCK	
	CORE/REAM:	
	ELEVATION/DEPTH BOTTOM SCRE	
	ELEVATION/DEPTH BOTTOM OF S	
	ELEVATION/DEPTH BOTTOM OF I	•
	BACKFILL MATERIAL BELOW SAN	V:

issorial personal substi-

Service Control

NWSC, Crane, Indiana
Building 146-Ordnance Demil Facilit
Lithology
Boring Number: WES-14-2-83

 $\overline{\Sigma}$ Water Depth at Time of Drilling

Well Screen

NWSC, Crane, Indiana
Building 146-Ordnance
Demil Facility
Well Completion
Boring Number: WES-14-2-

Bent. 9-11

BORING LOG

Page ___ of ___

PROJECT NAME: NSA Crane - SWMU 18
PROJECT NUMBER: 112G01851
DRILLING COMPANY: Micah Group
DRILLING RIG: / W655

DRILLER: Ben Borth / IN # 2359 WD

	DNIELEN. Beit Bottity IN # 2339 WD														
					N	IATE	RIAL DESCRIPTION			PID/FID Reading (ppm)					
Sampl e No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval				U S C S	Remarks	Sample		Borehole**			
5-1	Ų	2/2	1.4/			OV		a /				_	-		
2 !		/ /			M STIFF	BRN	TOPSOIL	0.4	15 <i>1</i> 5	0.1		0	0		
		3/2	120			Ben	Clay + + F Canoci	Jec							
5-2		¹ 2	/ لا،		M. SKH	5'EN	Clay + + F Cauce		1520						
		3/5	120												
5-3	ی	3/4	2.0/		SKIFF	BRN	Silt some Clay	mtt	1530	<u>.</u> [0	0		
		7/10	120						new bottom						
3-4		20	14/		U 545AF	RRN	Same as above		20,700	<u> </u>					
		13/	2.0	i		11	70000			_					
5-5		214	1.8/		1 - 150	Berl		-		0	\dashv	0	0		
1,75		30,1	_/_		VSAFF										
	10	/51/c	4/19			BRN arty	Wenth Sundstane		Shaleinsive	0		0	0		
				11:21		BRN	Sandstone		Chatterat 10.5'						
				~ ~		gmy	Shale								
						BRN	Shale Sandstone								
									Chatterat 13'						
	15														
			:												
			-								_				
				[7]		i e V	Cul	\vdash	<i>((n - :</i>		\dashv		_		
┢╌┼						9-7	Silty Sandstone		Charter at 17'						
		-						ļ			_				
	λo	/)		H											
									Strong Cont.		_				
									Uniter at 20-21						
									very Ital d		7				
							Coal						\neg		
	25										\exists		\neg		
	_									_					

25													1
* When rock coring, e ** Include monitor rea	ding in 6 foo		borehole. Incre	ease reading	g frequency if ele	vated reponse re	ead.		Drillin				_
Remarks: 3	SYI	9 [4	10	[†)A	0 - 10	, AR 10	<u>- 2</u> 4 	- Bac	kground	(ppn	n):[_ 	0	<u></u>
Converted to V		Yes 13	73	No _		Well I.D). #:	18 A M	100 Tu				_
Suree	11-	ጋ 3											

WELL NO .: 184 MWT 00 1

BEDROCK MONITORING WELL SHEET WELL INSTALLED IN BEDROCK

Tetra Tech NUS, Inc.

	PROJECT NSA Crane - SWMU 18 L PROJECT NO. 112G01851 EDATE BEGUN 124 11-18-11 EFIELD GEOLOGIST K. COSCKAMIT GROUND ELEVATION 634.407 E	DATE COMPLETED 12-5-11 METHOD 15A + AR
/99 INL		ELEVATION/HEIGHT OF TOP OF SURFACE CASING: 687.39
07/20/99		ELEVATION/HEIGHT TOP OF RISER: 637.03/
ACAD: FORM_MWINBR.dwg		TYPE OF SURFACE SEAL: Concrete Pad (4x 4x 6") W/ 4 bolloids I.D. OF SURFACE CASING: 6"
ACAD: FOR		DIAMETER OF HOLE:
		TYPE OF RISER PIPE: Sch. 40 PUC
		TYPE OF BACKFILL: <u>Cement Bentonik</u> govt
	T.O.R.	ELEVATION/DEPTH TOP OF SEAL: ELEVATION/DEPTH TOP OF BEDROCK: TYPE OF SEAL: Scatonite
		ELEVATION/DEPTH TOP OF SAND:
		ELEVATION/DEPTH TOP OF SCREEN: TYPE OF SCREEN: SLOT SIZE × LENGTH: O.ODO'' X 10' I.D. SCREEN: TYPE OF SAND PACK: 10-20
		DIAMETER OF HOLE IN BEDROCK: $5.5''$ CORE/REAM: $10' - 24'$
		ELEVATION/DEPTH BOTTOM SCREEN: ELEVATION/DEPTH BOTTOM OF SAND: ELEVATION/DEPTH BOTTOM OF HOLE: BACKFILL MATERIAL BELOW SAND: Benton te

TE	TETRA	TECH
----	-------	------

PROJECT NAME: NSA Crane - SWMU 18

BORING LOG

Page ___ of ___

		ΓNAMI ΓNUM		NSA C	rane - SV 01851	VMU	18		BORING N	lo.:	18DMWT0	01			
			PANY:		Group	- · · · ·			GEOLOGI	ST:	Y. Evars				
DRIL	LING	RIG:		(ME	S ATU				DRILLER:		Ben Borth / IN # 2	359	W)	
Sampi e No. and	Depth (Ft.) or	Blows / 6" or RQD	Sample Recovery /	(Depth/Ft.)	Soil Density/		RIAL DE	SCRIP	TION	US		PID/FI			
Type or RQD	Run No.	(%)	Sample Length	or Screened Interval	Consistency or Rock Hardness	Color		terial Clas		C S *	Remarks	Sample	Headspace	Borehole**	BZ**
							ref	er to	DOI DOI		1640-1645	_	-	Ø	7
							187	MW	NOI		HSA 0-5'				
							for	1:41	no large						
							0	-5	, 6 6			\vdash			
	7	\angle					-								
			٠,	111=11		ton					1 Start 1650	<u> </u>	-	ø	4
0.0	9	21%	0.7.8	D.		85	Fyr	Sand	stne	Br	O Start 1650 End 1700				
	\Diamond	/									1710 WL=7.7'		Ш		
		\angle		>							E) Stev+ 1710		_	Ø	ø
	15			1	<u>+</u>	tray	ς <u>'</u> : Ξ	w. Cla	***		(No put)				
0.0	©	0%	12/5.0	- 7				D-04/1	EJ						
						200	Fav	Sa	dstre	Br					
	4					1	 J -		-						
	1									VBY	1725-1740 Replace Bit	=		0	ప
小工	15		47								8 Start @ 1743				
210	(3)		15.0								End @ 1748				
								L Fr		Bn					
	A					y		1 ~	16.8		17.4 to 17.5	-	-	0	১
				185							11/7/11				
	ટેક										@130 WL= 6.7				
							2"PUCS	Creen	8.0-18.0		60955 Ream to hydraulic prob	8	14	hen	
							(20-	510+)			hydraulic prob	In	-		
									7.0 -18.5		11/8/11 @ 0855 R		n	le	le
							Bento	ville.	4.5-7.0		81618.51				
	25			_							20910 Se+ Well				
		-	r rock brok		harabala di		na adio : f				D.:00 -				
		. 1	. A		-7			quency if ele	evated reponse re	ead.	Drillin Background			Q	5
_	-	57 57	x (e)	O-5 Mr no Yes	-ary	17.9 5.1	0 — 18 No	5							
Conve	erted	to Wel	l:	Yes -			No		. Well I.D	. #:	16 DMWTO	<u>ງ</u> [

TE TETRATECH BORING LOG

									Pag	је _	<u>-</u>	OT _	<u> </u>
		ΓΝΑΜ			rane - SV	VMU		lo.:	180 MWT0	ပ	· ! —	A	
		I NUM		112G			DATE:		11/6/4				
			PANY:	_	Group		GEOLOGI	ST:	T. Evans				
DRIL	LING	RIG:		CVE:	ST ATV	/Gu	Status DRILLER:		Ben Borth / IN # 2	359	WΓ)	
					N	IATE	RIAL DESCRIPTION	I	1	PID/P) Rea	dina ((nom
Sampl	Depth	Blows /	Sample	Lithology		<u> </u>		l u				<u></u>	
e No. and	(Ft.) or	6" or RQD	Recovery	Change (Depth/Ft.)	Soil Density/	-		s				١.	
Type	Run	(%)	Sample	or	Consistency			С	Remarks	<u>ş</u>	ace	<u>.</u>	
or RQD	No.	ŀ	Length	Screened	or Doots	Color	Material Classification	s	Tiomains	Sample	Headspace	3orehole**	BZ**
				Interval	Rock Hardness			*		Ϋ́	문	Bor	-
1	0							1	Time				
c (3/	20/			0	720(0)	OL		 		_	┢
5-1		- 4			WStitt	Brh	Sill+ TV Clan Clar for & Gond	mi	1455	O	_	0	0
1		3/4	20			Crh	Clar some sall	СН	N.				
			1.0/	-	<u> </u>		T + Gara	1077	Day	├──	Н		₩
5-2			l''/]	N Dense	18,00	Tgr Sauditine		1500	\circ	-	0	0
	1	3/1	20	Ì) O+5	Ì					
		24,		ĺ		124	+ C Weath	╁		\vdash	Н		┢
5-3	5	16	1.7/		V Perse	· · · · ·	tgrandstone to		1510	0	`	O	0
	7	310	7[.7 -	S.7	_	1 1 to	For Sandstone Weath Bedden Ory Moscive		Switch to Mx come				
	Ť				 ,	O F PA) Massive	†	-	\vdash	\vdash		┢
	1	/_	10.	Y				<u> </u>	1 Start @1527		Ш		_
0.4	9	1490	13/8	/		Bus	F Sundature	Br	End 1230	*			
	大				,	13	F Sandstone HIX 7.0-7.4 W/n	s +	No Dust Beginning	^-	\vdash		-
	Y	/	/				, , ,		@ swart 1540		Ш		
	(5)					Tan	F Sandstone	VB1	Pust Agam				İ
1.7/	<u> </u>	43%	3.10	ľ		,,		Br	\$ NO DOSE			-	
1.7/40	<u> </u>	15/10	140					יע					_
	1						mud Atting Frace 813	NE	Endel550				İ
	∇						mud filling frace 815	1	1555 WL= 6.7				
								-	Core bit broken	$\vdash \vdash \mid$	—		<u> </u>
									offin hole				İ
	5								1 0				
	()				*			-		-	\dashv		<u> </u>
									1635 Plug	1			
								[hile w/				
\vdash				ı				├	1 1 5		\dashv		
\sqcup		<u> </u>							yearon in ?				L
									hole cul bentomite & re-locato approx 2 fs				
	مح		·						2 14				
\vdash	لحري							<u> </u>	approx 2 +1				_
									5W				
				ŀ				-		\dashv	\dashv		_
$\vdash \vdash$											\Box		
1 1	i	//								l			
	52										\neg		
* When		ring, onto	r rock bro	konoss		i		L					
		-			borehole. Ir	ncrease	reading frequency if elevated reponse r	ead	Drillin	a Ar	ea.		
Rema			4"10		Z '	SAT	0 to 5.7'	u.	Background			_	7
	-	,		ore			5,7 to 12.5			VE-12-1	 	/	
Can	۔ آ۔ مصر	to We	11.	Yes			No. 1/ Mar III =	,,,					
CONV	ened	to Me	11.	168			No Well I.D	J. #:					

WELL NO .: 18 DMWTOOI

BEDROCK MONITORING WELL SHEET WELL INSTALLED IN BEDROCK

Tetra Tech NUS, inc.

	PROJECT NSA Crane - SWMU 18 LO PROJECT NO. 112G01851 BC DATE BEGUN 1 - 6 - 11 DA FIELD GEOLOGIST T. E UMM S GROUND ELEVATION 6 3 7 0 DA	ATE COMPLETED 11-7-11	DRILLER Micah Group / DRILLING Ben Borth IN # 2359 WE HSA / A / Rotery DEVELOPMENT METHOD
AR INC	•	ELEVATION/HEIGHT OF TOP OF	SURFACE CASING:
07//0		ELEVATION/HEIGHT TOP OF RIS	ER:
MUNDER OWG		TYPE OF SURFACE SEAL:	
ACT OF		I.D. OF SURFACE CASING:	
ć		DIAMETER OF HOLE:	8
		TYPE OF RISER PIPE: Sch	to PUC
		TYPE OF BACKFILL: Cement	Bentonite rout
	TOR		L: 74.5
		TYPE OF SEAL:	
		ELEVATION/DEPTH TOP OF SANI	D: <u>74.0, 7.0</u>
		TYPE OF SCREEN: SLOT SIZE × LENGTH: 0.03 I.D. SCREEN: 2'	10 PVC
		TYPE OF SAND PACK: # 2 (US Siene	(ard 10-70)
		DIAMETER OF HOLE IN BEDROCK CORE/REAM: NX Core Rea w	
		ELEVATION/DEPTH BOTTOM SCR ELEVATION/DEPTH BOTTOM OF S ELEVATION/DEPTH BOTTOM OF S BACKFILL MATERIAL BELOW SAN	SAND: / 18.5 HOLE: / 19.5

–		NAM			rane - SV	/MU		lo.:	18EMW T	00	j		
		F NUMI			01851 n Group		DATE: GEOLOGIS	2Т∙	11-1611 T.Evans				
		RIG:	73141.	CME		A st	DRILLER:	٠,,	Ben Borth / IN # 2	359	WE)	
	1	Γ	T				RIAL DESCRIPTION			PIDţFIC	==	==	nnm)
Sampl e No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval		Color		U S C S *	Remarks	Sample	Headspace	Borehole**	BZ**
	0	7							Time				
5-1		1/2	1.4	11/17 7		tev	Grand Sit	gn	1545 wet	ပ	,	0	٥
<u> </u>		1/2	2.3	- ⁻		Ian B	rn Silt Tr Fsand	514					
5-2		44	1.4/			tan	Silt Trosad	NL	1550 Day	2	1	ગ	ව
		31	/2.0			Br ~	Tr-Some Clay						
5-3	5	6/7	13						1600	Ó	-	O	J
		5/	12.7			1	Pour Silk Sal Some	¥ 5∽					
54		2/9	14/14			Gray	Silty Sard weath sandstone	54-	1605	0	1	0	Ü
		2/84	Ţ	11511		LtBn	n weath saudstone		1) Start 1670				
						ijξ,			End 1640		,		
0/00	0	80%	0%			,	· No Alecovery - (Ousty 10-11'; sa			,	1	C	U
	\mathcal{L}		73.3			٧	(ousty 10-11'; sa	d	11/17/11 - water 6	5			
	Y			a construction	11-15 A Hand	705			354×+ 0855)	-	υ	ر
0.0		hoj	4.9,					*(1	End 0940				
15.0	(2)	0/	15.0		18-15	tan	Egandstone	VBr	(Abundant with while correct)				
				de la companya de la		. <i>91</i> 9	<i>y • • • • • • • • • • • • • • • • • • •</i>		Ų				
	A			,									7
0.0	X	/11	1.7/		Hard	tv	F Sand Stone	VBr (3)Start 0155	ſ		0	7
2.5	3)	0%	2.5			Ban			and 1005				
				-		,	- Rust striving on com	2 4					\exists
	20			18.5					113. Ream bove	<u>ل</u> ما	٦	4,	<i>5</i> . 5
									1145 @ 18:5'				Ť
							2 pac screen (20 slut)		8.5-18.5				\exists
							# 2 Saml (3 huns)			ه ده	<u>. 1</u>	4	2
							#2 Sand (3 bays) Bentonite (Xby)		62-83			·'	一
	25						DUM, TO THE COUNTY		•				\dashv
	rock co		r rock brol		<u> </u>								
** Includ	de moni arks:	tor reading 2	g in 6 foot 7 5 11	intervals @	borehole. In	crease	reading frequency if elevated reponse re $() - \Theta - \varphi'$	ead.	Drillin Background				$ \Box $
	-	<u> </u>	X A	ir Co	re,		7.47-18.5	_		·~~'			<u></u>
Conv	Converted to Well: Yes No Well I.D. #: (&FM ~700)												

WELL NO .: 185 MWTOOL

BEDROCK MONITORING WELL SHEET WELL INSTALLED IN BEDROCK

Tetra Tech NUS, Inc.

	PROJECT NSA Crane - SWMU 18 LO PROJECT NO. 112G01851 BC DATE BEGUN 11-16-11 DA FIELD GEOLOGIST T. EVANS GROUND ELEVATION 655, 89 DA	ATE COMPLETED 11-17-11	DRILLER Micah Group / DRILLING Ben Borth IN # 2359 WD METHOD (SA /A) (Cotar) DEVELOPMENT METHOD SURGE / PUMP
AA TINE		ELEVATION/HEIGHT OF TOP OF	SURFACE CASING: 659.4/3.5
/07//0		ELEVATION/HEIGHT TOP OF RIS	SER: <u>659.1/3.2</u>
DAD LIGHT WITH MUND		TYPE OF SURFACE SEAL: (p) ('\' \' \' \' \' \(\' \' \' \' \' \) I.D. OF SURFACE CASING:	17
7.040.		DIAMETER OF HOLE:	
		RISER PIPE I.D.: TYPE OF RISER PIPE: Sc.	40 PUC
i		TYPE OF BACKFILL: Comen	1. Bentonite
	T.O.R.		1.1. $649.9 / 6.0$ 1.1. $648.5 / 7.4$ 1.1. $648.5 / 7.4$
		ELEVATION/DEPTH TOP OF SAN	id: 6 <u>47,9 / 8.3</u>
		ELEVATION/DEPTH TOP OF SCR TYPE OF SCREEN: SC L SLOT SIZE x LENGTH: 0.02, I.D. SCREEN: 3"	40 PUC
		TYPE OF SAND PACK: #2	10-20)
		DIAMETER OF HOLE IN BEDROC CORE/REAM: NX Cove	
		ELEVATION/DEPTH BOTTOM SCE ELEVATION/DEPTH BOTTOM OF ELEVATION/DEPTH BOTTOM OF BACKFILL MATERIAL BELOW SA	SAND: 637.4/18 G37.4/18

Page 1 of 2

PROJECT NAME: NSA Crane - SWMU 18 BORING No.: 186 NW TOOY PROJECT NUMBER: 112G01851 DATE: DRILLING COMPANY: Micah Group GEOLOGIST: T. EVALI DRILLING RIG: CNE ST Track Ben Borth / IN # 2359 WD DRILLER: MATERIAL DESCRIPTION PD/FID Reading (ppm) Depth Blows / Sample | Lithology Sampl U (Ft.) e No. 6" or Recovery Change S Soil Density/ and or RQD (Depth/Ft.) Borehole** С Type Run (%) Sample Consistency Remarks BZ** Color or RQD Length Screened **Material Classification** S Interval Rock Hardness 0 DK 8-2 TUP Suil 5-1 154 > 0 0 Ce Days-Dr 5-2 О 2 5-3 15 ME 1545 0 υk Brn Silt some (Tupsail) 5-4 1550 Э S C /2.0 Cm. 10 las weath Sandstone 5-5 1600 0 0 0 ۵ 1605 ں 10510 Sandstore in Swe 12/16-HSA+121 Install temp cas france stone 760 0 0 3176 Siltature w/ Black DStart 0905 End 0915 (2) Any 0925 00 End 0935 w/ lan vac @ Lotten VBR3) Start 1105 O6 Soulstne W/ BIK E-4 1110 BIK (Hoser Seddin * When rock coring, enter rock brokeness. ** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Remarks: $\frac{4}{4}$ $\frac{1}{1}$ $\frac{1$ **Drilling Area** Background (ppm): Yes Converted to Well: Well I.D. #: 18GNW7804 Mill rett - ness-6-67

Jor Wart day

Page _ 2 of _ 2

PRO DRIL	JECT LING	NAMI NUMI COMI RIG:		112G0 Micah	rane - SV 01851 Group			BORING N DATE: GEOLOGIS DRILLER:	o.: ST:	12-16-11 + FURNS Ben Borth / IN # 2	بر ب 359	WE)	
				_	N	IATE	RIAL DESCRIPT	ION			PIDIJII) Rea	ding (ppm)
Sampl e No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Class	sification	U S C S *	Remarks	Sample	Headspace	Borehole**	BZ**
				+	·				BR	-				
	太								別					
0.4	\Re	27%	11/	9		Gran	SilyFSandsha	~		@ Start 1120	_	-	0	0
11.5		\angle	11.5		4	sik	Sily Frandsta W/B/k lai	in hadd		Frd 1127				
	30													
		\angle								1245 WL= 18,21				
	2.						Natural Carely	27-28.		1245 WL=18.21 1300 Kean BH				
							20-16+ sce	en 17-27						
							20-16+ scre #2 Sand Rendonite	15-27						
							Renton te	10-15						
								: 						
** Includ	le moni arks: _	-			borehole. Ir		reading frequency if ele	evated reponse re		Drillin Background	(ppr	n):[

WELL NO .: 186 MUTUSLY

BEDROCK MONITORING WELL SHEET WELL INSTALLED IN BEDROCK

Tetra Tech NUS, inc.

	PROJECT NSA Crane - SWMU 18 LC PROJECT NO. 112G01851 BC DATE BEGUN /2/15/11 DA	OCATION Subarra	DRILLER Micah Group /
	PROJECT NO 112G01851 BC	ORING 186 MATTINE	DRILLING Ben Borth IN # 2359 WD
	DATE BEGUN /2/15/11 DA	ATE COMPLETED /2-//-/	METHOD HIA/AIT Latary
	FIELD GEOLOGIST + Eva us	•	
	GROUND ELEVATION 654.09 DA	ATUM_NAVD 88	DEVELOPMENT METHOD PASSURGE/PUMP
_			
Ξ		ELEVATION/HEIGHT OF TOP OF	SURFACE CASING $65/.0/2.9$
8	—		
8		 	SER: 656.7/2.6
8		ELLEVATION/HEIGHT TOP OF RIS	ER. <u>22172.0</u>
₽			
Ę.		TYPE OF SURFACE SEAL: Ch	erete that
2		(4'x4'x6") w	14 Bullards
٩		I.D. OF SURFACE CASING:	11101001
5		1.D. OF SURFACE CASING:	<u> </u>
Ş			
₹		DIAMETER OF HOLE:	<i>"</i>
		RISER PIPE I.D.: 21 TYPE OF RISER PIPE: 5044	to All
		TIFE OF RISER FIFE.	70 700
		TYPE OF BACKFILL: Comen	r-Renturite
)
		+- ELEVATION/DEPTH TOP OF SEA	L: 644, 1/10.0
	T.O.R.	ELEVATION/DEPTH TOP OF BED	ROCK: 642,9/11,2
		TYPE OF SEAL: Ben to	
		TIPE OF SEAL: 1300 181	7.00
			
		ELEVATION/DEPTH TOP OF SAN	D: 639.1/15.0
			5. 5 1617 75
			(37)
		ELEVATION/DEPTH TOP OF SCR	EEN: 637.1/17.0
		TYPE OF SCREEN: School	7 101
		I.D. SCREEN:	<u> </u>
		TYPE OF SAND PACK: G 65	a1 # 5
		(US Sieve 10	-20)
		DIAMETER OF HOLE IN DESCRIPTION	5-"
		DIAMETER OF HOLE IN BEDROC	K:
		CORE/REAM: NO 11.2	28.51
		5.5" \$ 11.2	- 28,0
		ELEVATION/DEPTH BOTTOM SCR	EEN: 627.1/27.0
	<u></u>	ELEVATION/DEPTH BOTTOM OF	
		ELEVATION/DEPTH BOTTOM OF	
		BACKFILL MATERIAL BELOW SAN	
J		1	

Page __/ of _ Z

PROJECT NAME: NSA Crane - SWMU 18
PROJECT NUMBER: 112G01851
DRILLING COMPANY: Micah Group
DRILLING RIG: CME 55 / DRILLER: Ben Borth / IN # 2359 WD

DRILLING RIG: CML 3 5 / DRILLER: Ben Borth / IN #										339	VVL	<u> </u>	
					N	IATE	RIAL DESCRIPTION	Г		PID/FII	D Rea	ding ((ppm)
Sample e No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color		U S C S *	Remarks	Sample	Headspace	Borehole**	BZ**
5-1		2/	15/			OKB.	Cla	OL	0435	0	_	0	0
		3/	12.0			PAA	Cla	د د			-	Ť	
5-2		4	1.7			Bon	Cla	a	0938	O	_	0	0
		2/3	120			L+Brn	Cill To C	ML	5778			\vdash	
5:3	5	1/2	1.9,			H Brh	Clar Day Silt Tr-Some Clar Silt tr Clar	ML	0942 Dry to			0	0
	,	6/0	2.0			& Gran	7 17 (12)	JAC.	0942 Dry to	<u> </u>	_		Ť
5-4		6/10	1.47				Silt Tr VF sand	INL		├-			
		9/1	2.0			14 Bry	Clay		Dang Dang			υ	0
5-5		3/6	1.8/			14 08/4	1 10	CL	0957	0	_	υ	0
	10	7/5	12.0			,		T	04 5 /	0		\dashv	
5-6	`		1.3/						(000	0	_	o	0
, ŭ		2/1	12.0	1				1	(00)	0			Ť
5-7		850/	m.c	,		Tan	(Weath saystac)	. 5H	1005	O	_	၂	v
	7		, , , , ,	1=14			(WPATH (MODINE)		Dx Core	Ů			Ĭ
1.9	(5)		2.6/	~	BR	Tov	Sily Fs and thre		2501 to 1035			\neg	
13.0	0	33%	1300			Ben				[]	_	0	0
	Y				BL	Ton	1 W/Tawinge (175-185)		Stev4: 1050				
2.º/ /5.0	0	0,0	48/		UBA	Gin	1 w/the		End: 1100				
15.0		40%	15.0		e.c.	BIN BIN	(175 - 185)						
	20				VBR	- 1	-			0,5		5	0
	$\overline{\lambda}$			57	BR	Red Brn	Sily & Sadstur						一
	Y		5.0	3	BR		(No lawiver)		1.5			\dashv	\exists
3.7	(B)	78%	50	==		4.0			(9) Stevil 1105			\dashv	\dashv
المرا				-		ten			End: 1115			\dashv	
	25					612			1:30 MT= 5 A'VI		_	0	0
											_	_	

* vvnen rock corin	ig, enter rock i	prokeness.				
** Include monitor	reading in 6 f	oot intervals	@ bgrehole. Incre	ase reading fr	requency if elevated reponse read.	Drilling Area
Remarks:	ン" 7	PT,	4/4 10	HSA	0-12.9	Background (ppm):
	NX	Corre			12.9 - 27.9	
	5,5"	O AT	WtirT		129 - 21.0	
Converted to	o Well:	Yes		No	Well I.D. #:	18TMWTO01

Page ____ of ____

PRO	JEC ⁻		BER:			VMU	18 BORING DATE: GEOLOG	No.: IST:	18 1 MW TO.	01			
DRIL	LING	RIG:		CME	55 /G	wi P	<u>പ്</u> രാ DRILLER:		Ben Borth / IN # 2	359	WE)	
Sampl	Depth	Blows /	Sample	Lithology	N	1ATE	RIAL DESCRIPTION	J		PID/FIC) Rea	ding (ppm
e No. and Type or RQD	(Ft.) or Run	6" or RQD (%)	Recovery / Sample Length		Soil Density/ Consistency or Rock Hardness		Material Classification	U S C S *	Remarks	Sample	Headspace	Borehole**	BZ**
	人			1.				†					_
275	X		1.3/		Be	Y. 2	FSauls true	\top	9) Start 1315				\vdash
2.0	43	38/2	12.0					\dagger	EVel 1330		-	0	ره
						pace on a principal		†	swild to AN Ro	ter	,		
	30			+1					1500-1505 AN ROTERY				
		/		<u>+</u> :		٧ <u>ت</u> الد (ج	a - vale						
									1530 W= 15"				
									1555 set well				
		\angle					2 PVC sciention SI + 2 card (7/4/2) Bentonte	<u> </u>	21-31				
		\angle					# 2 and 12/4/70		15-31				
							Bentonite	ľ	17-19				
		/						_					
		\leq						ļ.,			_		
						_		╁			_		
		<						 		\vdash	_		
\vdash		-						-			\dashv	_	
								+		\dashv		\dashv	
		$\overline{}$						+		_	4		
		\leftarrow						 		\dashv	\dashv	\dashv	
								-			\dashv		
								 		\dashv	\dashv	\dashv	
										\dashv	\dashv		
			r rock bro					<u></u>					
** Includ		tor readin	g in 6 foot	intervals @	borehole. Ir	ncrease	reading frequency if elevated reponse	read.	Drilling Background			ø	
Conv	erted	to We	II:	Yes	V		No Well I.I	D. #:	18 I.ML	J7	Dι) [

WELL NO .: 18IMWTOOL

BEDROCK MONITORING WELL SHEET WELL INSTALLED IN BEDROCK

Tetra Tech NUS, Inc.

	····	
PROJECT NSA Crane - SWMU 18	LOCATION Subaven I DRILLER Micah Group/	
PROJECT NO. 112G01851	BORING 181 MW TOUL DRILLING Ben Borth IN # 2	2359 WI
DATE BEGUN 11-22-11		DHAVY
GROUND ELEVATION 695.63		imp
2		
	ELEVATION/HEIGHT OF TOP OF SURFACE CASING:698,47	<u>'Z.8</u>
	ELEVATION/HEIGHT TOP OF RISER: 698,17	12,5
	TYPE OF SURFACE SEAL: Concrete (4'x4' x 6"	′)
	I.D. OF SURFACE CASING: 6" STEE!	
	DIAMETER OF HOLE: \(\cdot \frac{\chi'}{\chi}	
	TYPE OF RISER PIPE: SCL 40 DVC	
	TYPE OF RISER PIPE: SCL 40 DVC	
	TYPE OF BACKFILL: <u>Coment-Benton to</u>	
	Enut	
	ELEVATION/DEPTH TOP OF SEAL: 678.67	17.0
I.O.R.	ELEVATION/DEPTH TOP OF BEDROCK: 6917/	12,9
	TYPE OF SEAL: Routonite	
	ELEVATION/DEPTH TOP OF SAND: 676,6/	19.5
	ELEVATION/DEPTH TOP OF SCREEN: 674.6/	151.0
	SLOT SIZE x LENGTH: () . V 20 1 x 13 1	
	I.D. SCREEN:	
	TYPE OF SAND PACK: # Z Sowd	
	(US Sie ue 10-20)	
	DIAMETER OF HOLE IN BEDROCK: 5.5"	
	CORE/REAM: NY Core 12,9- 27,9	
	Ream 12.9-31.0	
	ELEVATION/DEPTH BOTTOM SCREEN: (64.6)	31.0
	ELEVATION/DEPTH BOTTOM OF SAND: 64,6/	131.3
	ELEVATION/DEPTH BOTTOM OF HOLE: 69.6/ BACKFILL MATERIAL BELOW SAND: N/A	31.0
	DAONITE MATERIAL DELOW SAIND: 17/14	

Page ___ of ___

		NAM			rane - SV	VMU		No.:	18J MWTS	01			
			BEH: PANY:	112G(Group		DATE: GEOLOG	GIST.	12/17/11				
		RIG:			> 55	Tra			T, E UALS Ben Borth / IN # 2	359	W[5	
			Υ				RIAL DESCRIPTION	$\overline{}$		PID/P			(ppr
Sampl e No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness			U S C S *	Remarks	Sample	Headspace	Borehole**	Γ
	0	1/1	19			Bru	Trpsuil	OL	line	╁	_	-	Ļ
5-1		= 4	1,9			316	Sit Tr VF Sad	ML	1548 DV4	0		0	0
		36	12.0						DV 9	↓_	Ш		L
5-2		5/5	1.9			Tan	Silt Tr UF Sand	MH	1550	0	_	0	ے
		29	12.0		1	کریم	Silt Tr UF Sand Sume VF Sand	0	Damp				
5-3	5	46	1.4		_	Tan	Cilt & F Sand	Sm	1557 .	0		0	J
		8/4	12.0				Silt & F Sand Dry-Dup	,		Ť			Г
5-4		8/6	1.51			Tan	~	my	1601	0	-	0	ć
		14/13	20		4	Brn	TI RED BINSS Frags	- 1/4 -			П		
2-2		'	رفاه و		7	8rn	Weather Sandy Sit	Hs ma	1613 000	O		S	a
	10		10.8	111=11		Gray			Install ten, Casin		\vdash	$\check{\vdash}$	Ť
			Ū			· /	Silty Sandstone		AL	1		-	-
								-	1632	\vdash			-
		\leftarrow							Chatte 2 12 5		\vdash		-
						Carre	Silf Flandstne		Chamber 12.5				<u> </u>
						Con	w/ Blic lawin						_
	15					Bru	sandy Shale			Ш			
						Brn	sandy Shale		1640				L
							<u> </u>						
				7									
				H -9-	-	8214 8214	Sandy Seam (CI" this	د ک					
	20					Tau	Flandstone		chatle @ 195	F			
							Cottones Day	ુ "ે હ્વ					
							•		U				
									Water After Ade	e e	d		
										\vdash	\dashv	\dashv	
	25						<u> </u>	1	·				
* When		ring, ente	r rock brol	ceness.									
** Includ Rema		tor reading	g in 6 foot	intervals @	borehole. In	ncrease	reading frequency if elevated repons	e read.	Drillir Basksmann	-	_		_
1 101116		5	5"	B A	v no)	Mry	0 - 8.8		Background	(ppr	n):[g	<u>-</u> _
Conv	erted	to Wel		Yes				I.D. #:	18J Nu	725	<u></u>		_
							AACII I	π.	100 15				

Page ____ of ______

PROJECT NAME:	NSA Crane - SWMU 18	BORING No.:	18JMW 7801
PROJECT NUMBER:	112G01851	DATE:	12/17/11
DRILLING COMPANY:	Micah Group	GEOLOGIST:	T. Evass
DRILLING RIG:	CT & SS Noch	DRILLER:	Ben Borth / IN # 2359 WD

DHIL	LING	nia.		<u> </u>	<u> </u>	- 177°	DRILLER:		Bell Bortil / IN # 2333 WD								
					M	IATE	RIAL DESCRIPTION		PID/FID Reading (pp								
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	y Change (Depth/Ft.) So or Co Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S *	Remarks	Sample	Headspace	Borehole**	BZ**				
				17		Svh	f soudstone										
				- 1					1022								
		/				and the second							Ш				
						7	<u> </u>	\vdash	1700 8 341				\vdash				
	30								1700@ 291		Н		Н				
		\angle					····		12/18 @0005		Н		\vdash				
		<					11		10 = 1 = 1		-		\vdash				
		-					2" puc został screen	+	18.5 - 28.5								
		$/\!\!\!/$					2" puc rostot screen # 2 Sand (15 Senc 10- Centurite	201	16.5 - 29.0	_	\vdash		\vdash				
\vdash		$\overline{}$					bentwite	-	13.8 - 16-3				Н				
\vdash		-						 - 					\vdash				
-		$\overline{}$								_			\vdash				
									·								
		/						<u> </u>									
									· · · · · · · · · · · · · · · · · · ·								
		\angle						_					\vdash				
		/				,		-					\vdash				
								-					\vdash				
		$\langle \ \ \ \rangle$						\vdash					\dashv				

When rock coring, enter rock Include monitor reading in 6 Remarks:		borehole. Incr	rease reading frequ	ency if elevated reponse read.	Drilling Area Background (ppm):
Converted to Well:	Yes		No	Well I.D. #:	18 JAW2001

BEDROCK MONITORING WELL SHEET WELL INSTALLED IN BEDROCK

Tetra Tech NUS, Inc.

PROJECT NSA Crane - SWMU 18 L(OCATION Subarra T	DRILLER Micah Group /
PROJECT NO. 112G01851 B0	ORING 19.7 MW TOO!	Ben Borth IN # 2359 WD
DATE BEGUN 12-17-11 DA	ATE COMPLETED 12-18-11	METHOD HISA / AIR ROTAY
GROUND ELEVATION 650, 24 DA	ATUM NAVD 88	DEVELOPMENT SURGE/PUMP
	ELEVATION/HEIGHT OF TOP OF	SURFACE CASING:(53,4/3.2
	ELEVATION/HEIGHT TOP OF RIS	SER: 653,1/2.9
	TYPE OF SURFACE SEAL: COM	
	I.D. OF SURFACE CASING:	6"
	DIAMETER OF HOLE:	1'
	TYPE OF RISER PIPE: S. N.	o pvc
	TYPE OF BACKFILL: (Fun f v	1 - Bentonite
	ELEVATION/DEPTH TOP OF SEA	L: 636.4/13.8
I.O.R.	ELEVATION/DEPTH TOP OF BED TYPE OF SEAL: Benton	
	ELEVATION/DEPTH TOP OF SAN	D: 633.7/16.5
	ELEVATION/DEPTH TOP OF SCR	to PUC
	SLOT SIZE × LENGTH: 0.020 I.D. SCREEN: 2 19	<u> </u>
	TYPE OF SAND PACK: Glob	20)
	DIAMETER OF HOLE IN BEDROC	к: <u>5,5''</u>
	ELEVATION/DEPTH BOTTOM SCR ELEVATION/DEPTH BOTTOM OF	SAND: 621,2/29.0
	ELEVATION/DEPTH BOTTOM OF BACKFILL MATERIAL BELOW SAI	

Page __/_ of __/_

PROJECT NAME: NSA CLAME SWM DD BORING No.: 22 MWTO 1
PROJECT NUMBER: 1/2602362 DATE: MAY 10. 2012

DRILLING COMPANY: MILAN GROUP / R. SIMANG

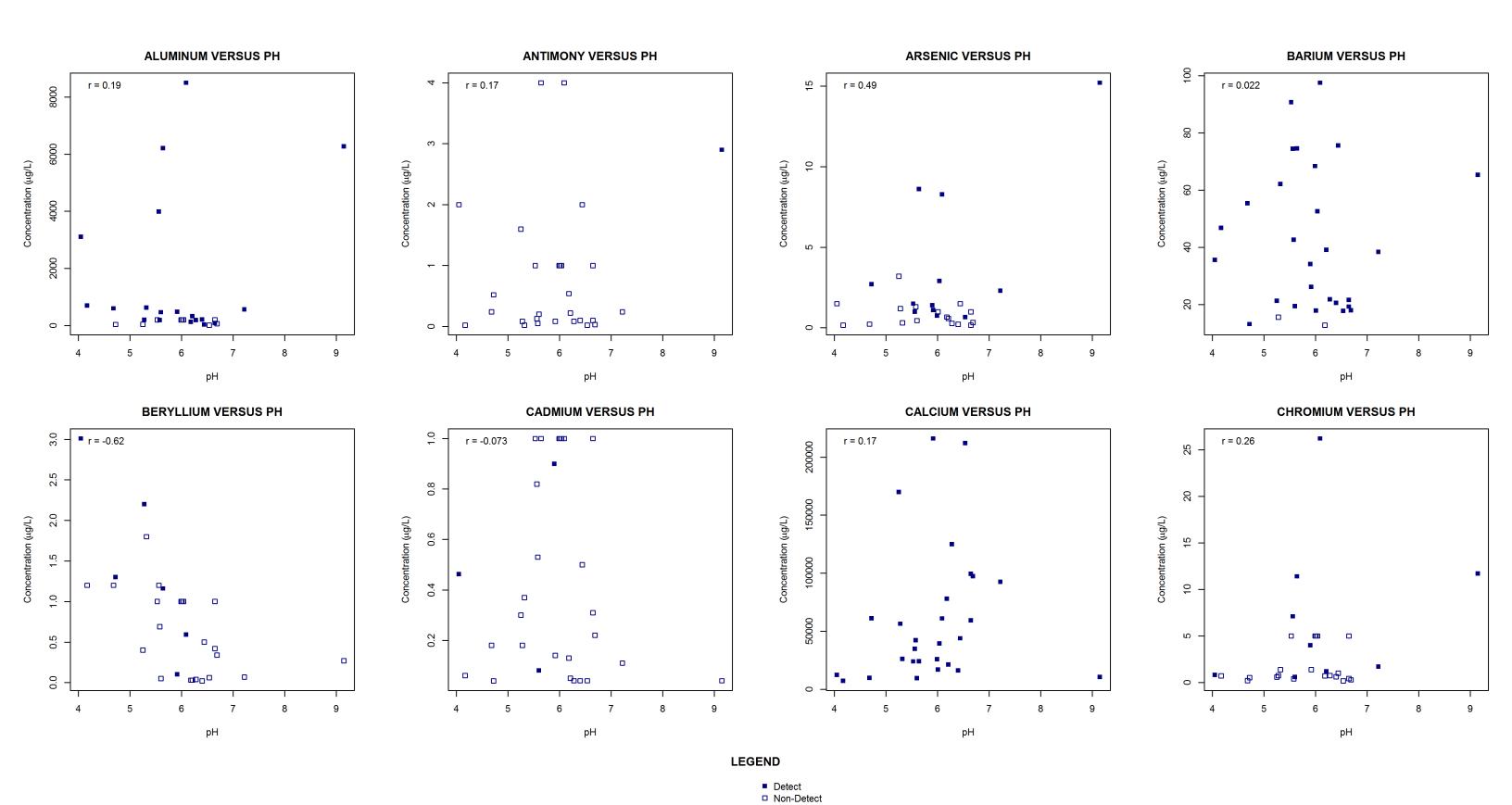
DRILLING RIG: CME 55 DRILLER: J. SMX A

DHIL	RILLING RIG: CME 35				2)	DRILLER:	J. SNY in					
					M	ATE	RIAL DESCRIPTION		PID/FI	D Rea	ding	(ppm)
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification S	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
5-1	0-1	6/13			V. Duse	GRAI	Siery Comise LS goal GP		೦	ပ	O	O
	1-2	23/25				Ban	Sould(Im) 5:13 and 5. lby food 57m	13:36 welled jock		Щ		Ц
5-2	213	50/1			V. Dure	- 600	Wheelful wir sing the soundston	mother rock		Щ		
	3-4					0147		13:46		Н		\vdash
5-3	4 4	A R			3065	RM	MILACLOUS Sort S. ltstm	13.54	_			Н
_	5-0				, -	PW DIM			0	0	0	٥
5-4	9-7				3011	owy	renthal silly to soudship	14:00		-		\vdash
5-5	7-3 3-9	10 10			٠.١	THAT.	and in tar holded as I fro for		-			\vdash
p - 5	3 .	15 P			38+	Jighan Tani. Big to		14:06	-		_	Н
3.6	12.7	11/1			Soft	Ban	micarcas, sort (for) silbha	14:10	0	O	0	0
	11:13					Dem By	nearlens.					
5-7	12-13				1hm d	612	Michellus silly for good	14:15				
	13-14	i				612	sondstore, maist					Ш
23	14-75	1/1			HARD	60	Microcery, inter bolded state	14:20	ļ			Ц
	15.16				w speed .	600	siltstone + Fig sondalus, moist		0	٥	0	Δ
5-9	14-17	1		=	Itará	600			L			\vdash
	17-19					Grey	V			<u> </u>		Н
5-10					M. Harl	1	MUMCOUS SAND (F) SHALY	14:25				-
A 11	19-20			E			5.11store Moist		_	2	_	
<u>\$-11</u>				Processing of the control of the con	m. Mart	ς .		14:35	0			0
5-12	21-72 22-23			-	M. Hard	610		14.35	-		-	H
- S &	1. A.			12	M. P. KIG	19 h		/ 3 3 3				\Box
	1.405	1			Milhori	-	,	wito bese after				
* 14/5			er rock bro	lennana				601m 1016			_	

		- 34				1- (O D		
When rock	coring, enter roc	k brokeness.		_		polling rolls		
* Include m	onitor reading in (6 foot intervals	@ borehole. Increas	e reading frequency	y if elevated reponse read.		Drilling Area_	
Remark	s: : . 20	4-17 3	124 365	48 = 15 ·	and or town	Ruller Back	ground (ppm):	0
	D. g.	2" os s	C12 46 PVC	screen a	0.010 SLOT (1.	5'-25') DS-	6PA 5000	
	sandpack	131-76	Bernent	21 12 356	10'-13'			
Convert	ed to Well:	Yes	*	No	Well I.D. #:	JUMEC	01	

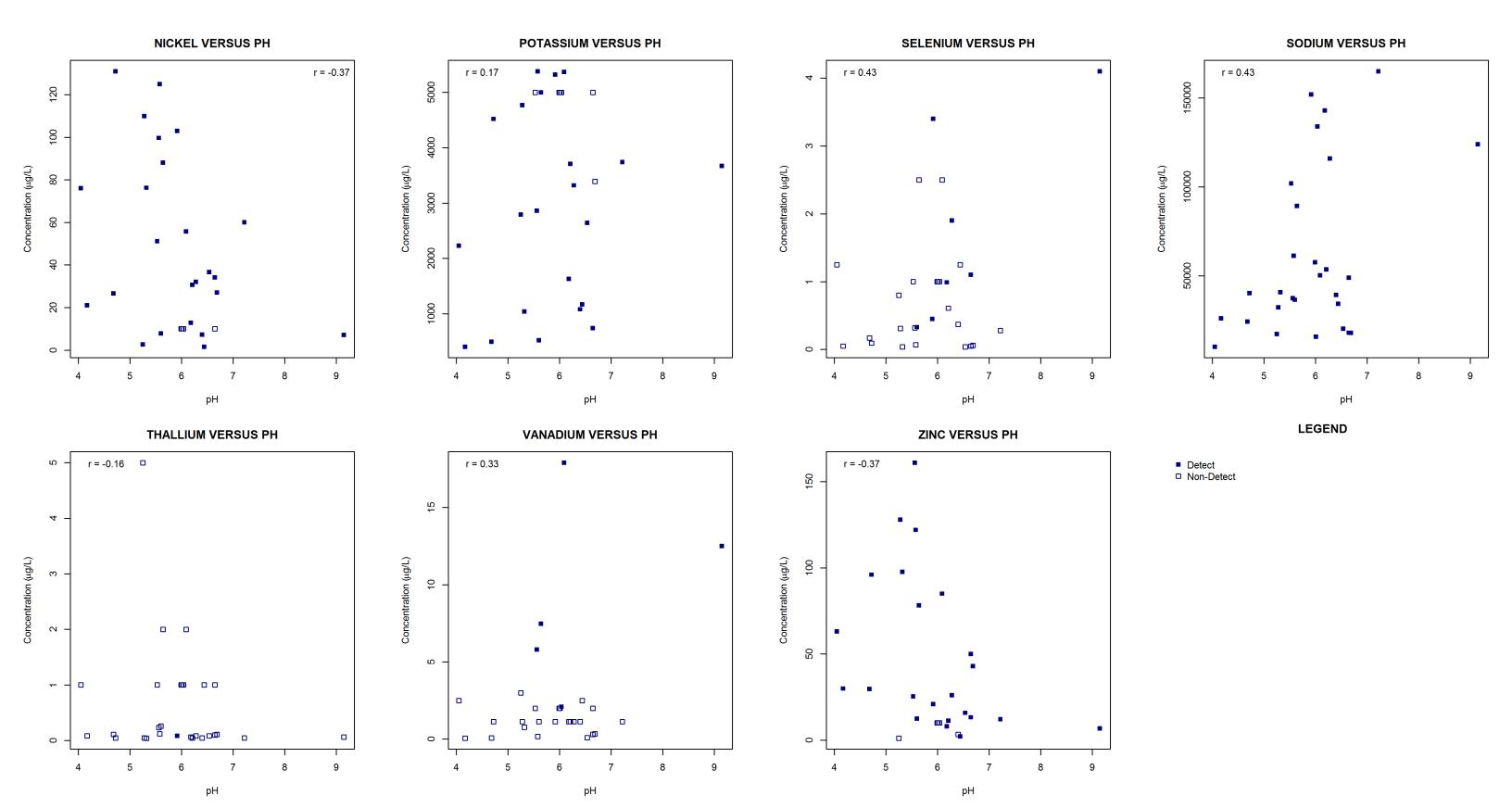
.....

WELL No.: 22-MWT01

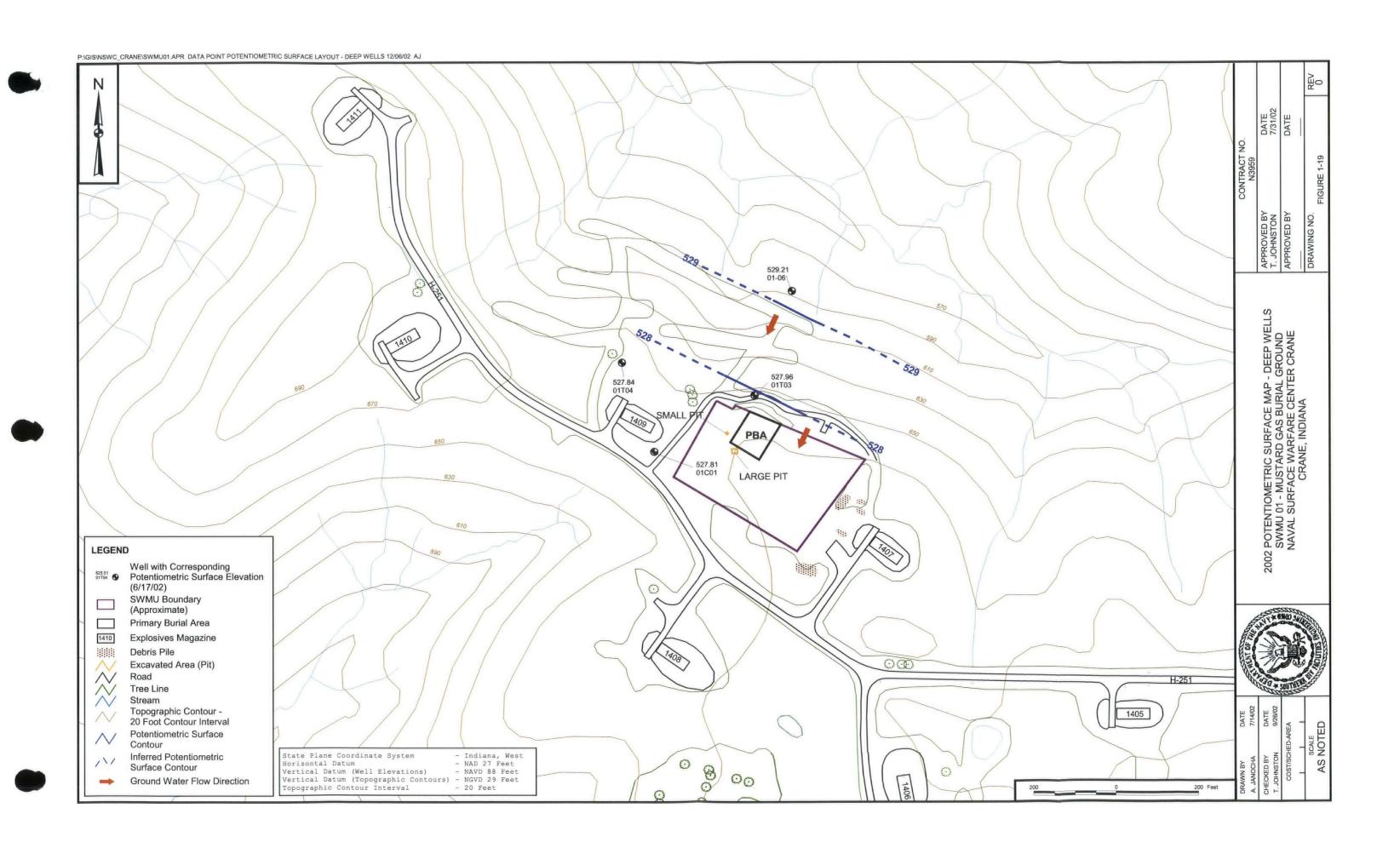

MONITORING WELL SHEET PERMIT No:

22-MWT01 PROJECT: NSA Crane SWMU 22 BORING No.: DRILLING Co.: Micah Group / R. Simmons DATE COMPLETED: 05/11/12 PROJECT No.: 112G02362 DRILLER: J. Russel SITE: Lead Azide Pond DRILLING METHOD: H.S.A. / Air Rotary NORTHING: 1315811.32 GEOLOGIST: J. Ferguson DEV. METHOD: Surge / Submersible pump **EASTING:** 3027409.14 768.94 / 2.77 Elevation / Depth of Top of Riser: Elevation / Height of Top of 768.74 Surface Casing: 2.47 I.D. of Surface Casing: 6 - inch Vertical Datum NAVD 88 Horizontal Datum: NAD 83 Type of Surface Casing: Schedule 40 Steel Ground Elevation: 766.47 Type of Surface Seal: Concrete I.D. of Riser: 2" ID, flush joint Type of Riser: Schedule 40 PVC Borehole Diameter: 8.25 inch Bentonite -cement Type of Backfill: mixture 756.47 / 10.0 Elevation / Depth of Seal: Type of Seal: Bentonite Pellet Elevation / Depth of Top of Filter Pack: 13.0 Elevation / Depth of Top of Screen: 751.47 15.0 6" ID Air Rotary Borehole Schedule 40 PVC Type of Screen: Slot size/ screen length: 0.010 Slot - 10' I.D. of Screen: 2" inside daimeter PVC Type of Filter Pack: DSI GP#2 Silica Sand Elevation / Depth of Bottom of Screen: 25.0 Elevation / Depth of Bottom of filter pack: 741.47 25.0 Type of Backfill Below Well: DSI GP#2 Silica Sand 741.47 Elevation / Total Depth of Borehole: 25.0 Not to Scale

APPENDIX C


CORRELATION PLOTS OF METALS AND pH

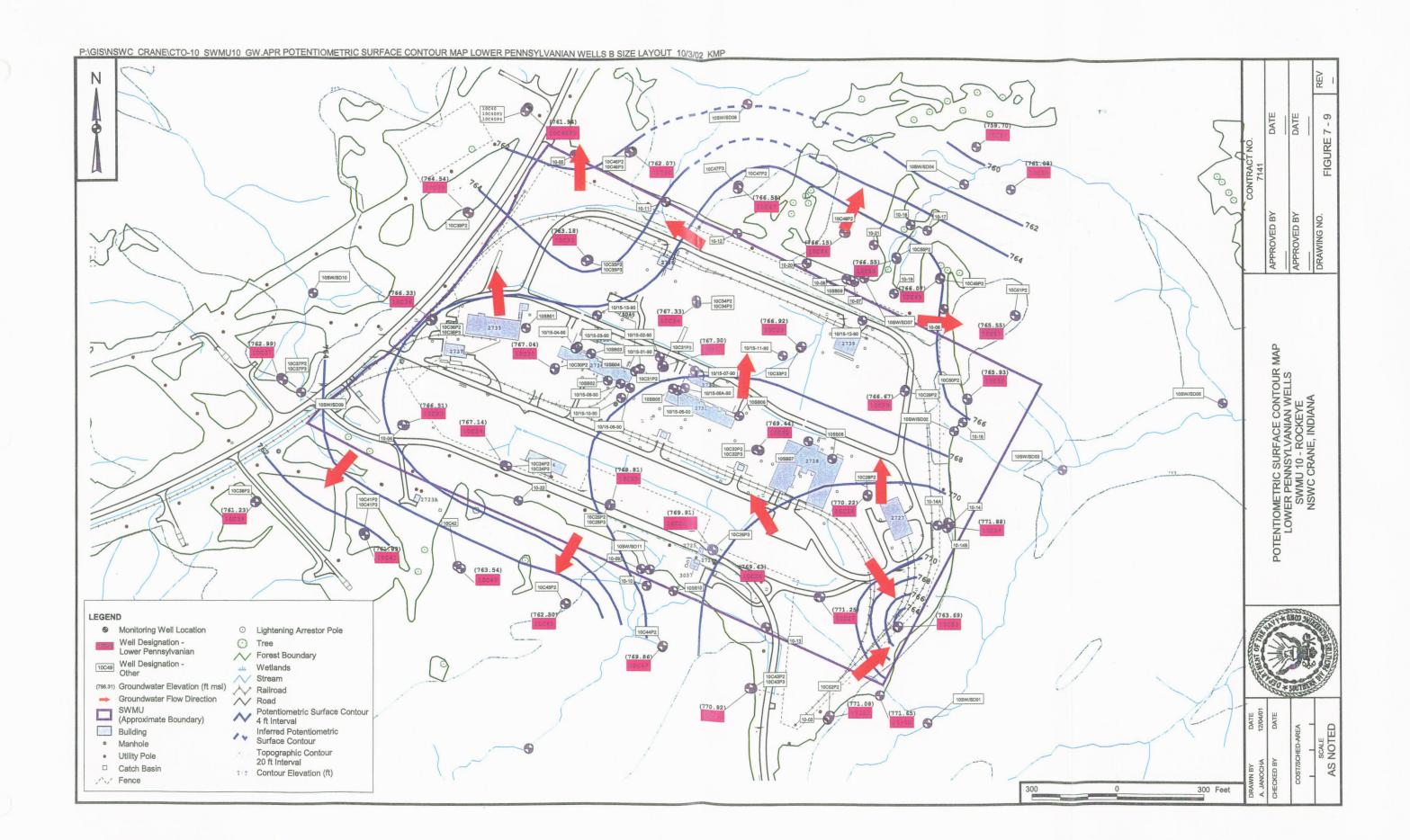
CORRELATION OF METALS AND PH SWMU 18 - LOAD AND FILL AREA NSA CRANE, CRANE, INDIANA PAGE 1 OF 3

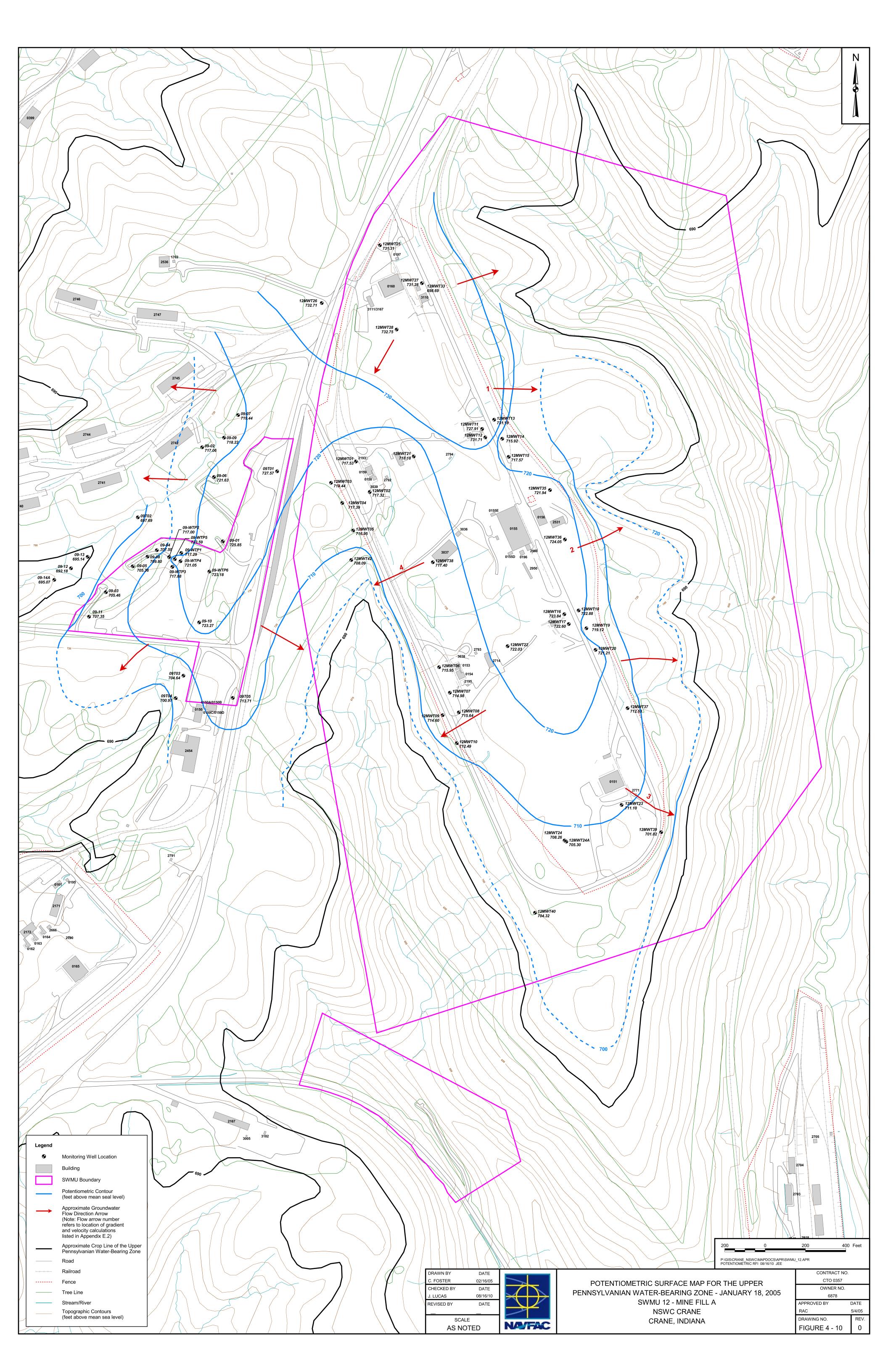

CORRELATION OF METALS AND PH SWMU 18 - LOAD AND FILL AREA NSA CRANE, CRANE, INDIANA PAGE 2 OF 3

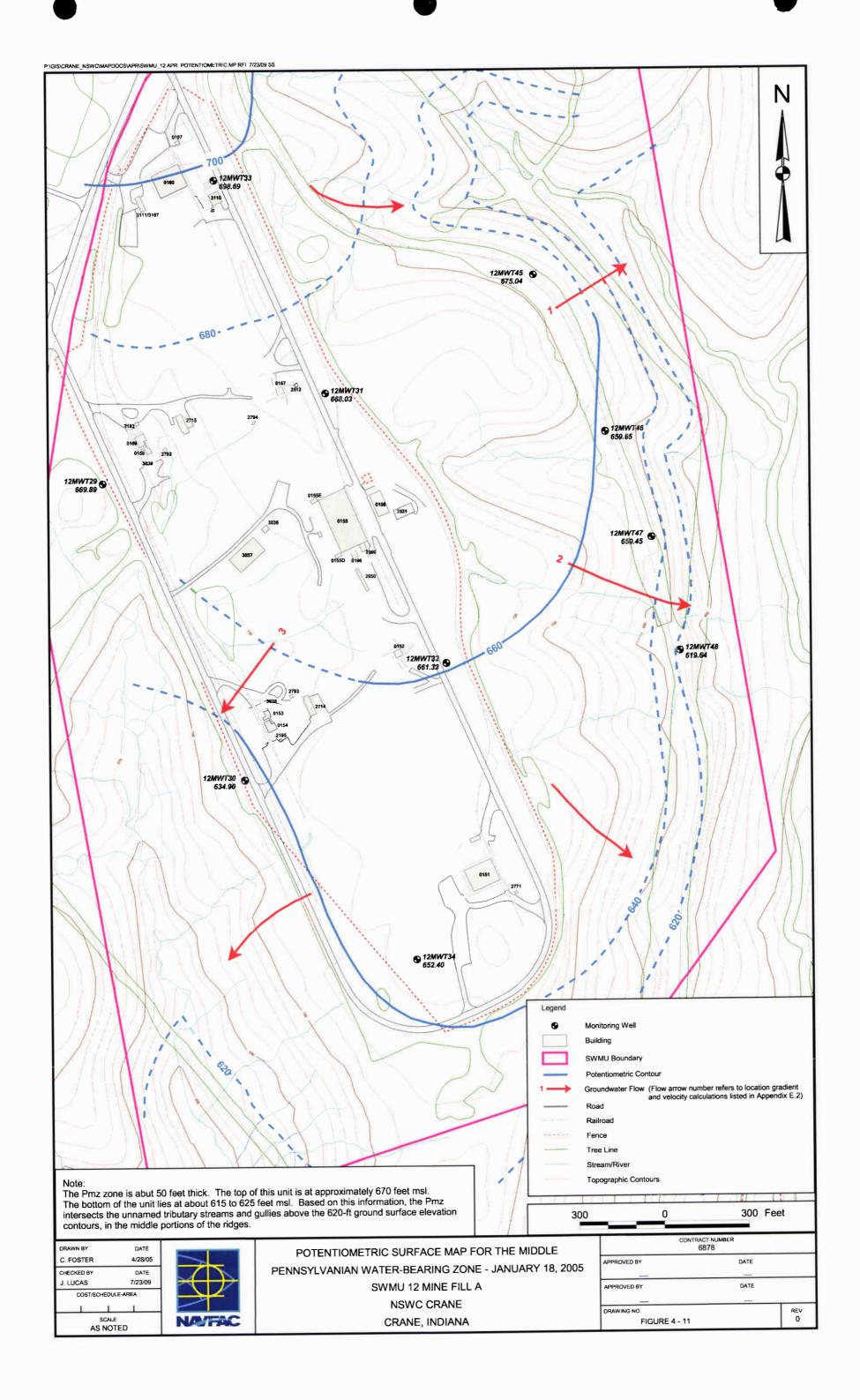
CORRELATION OF METALS AND PH SWMU 18 - LOAD AND FILL AREA NSA CRANE, CRANE, INDIANA PAGE 3 OF 3

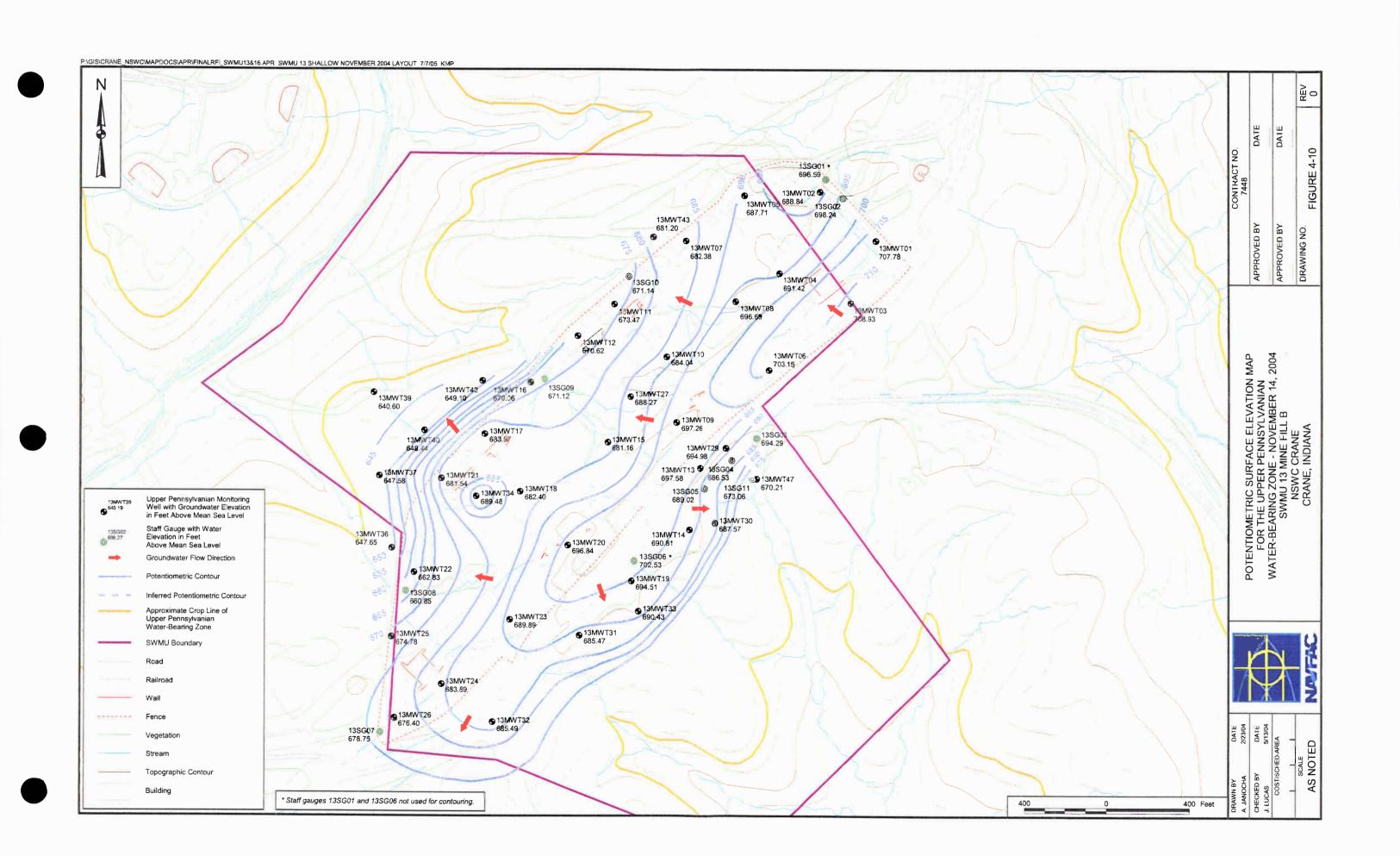
APPENDIX D

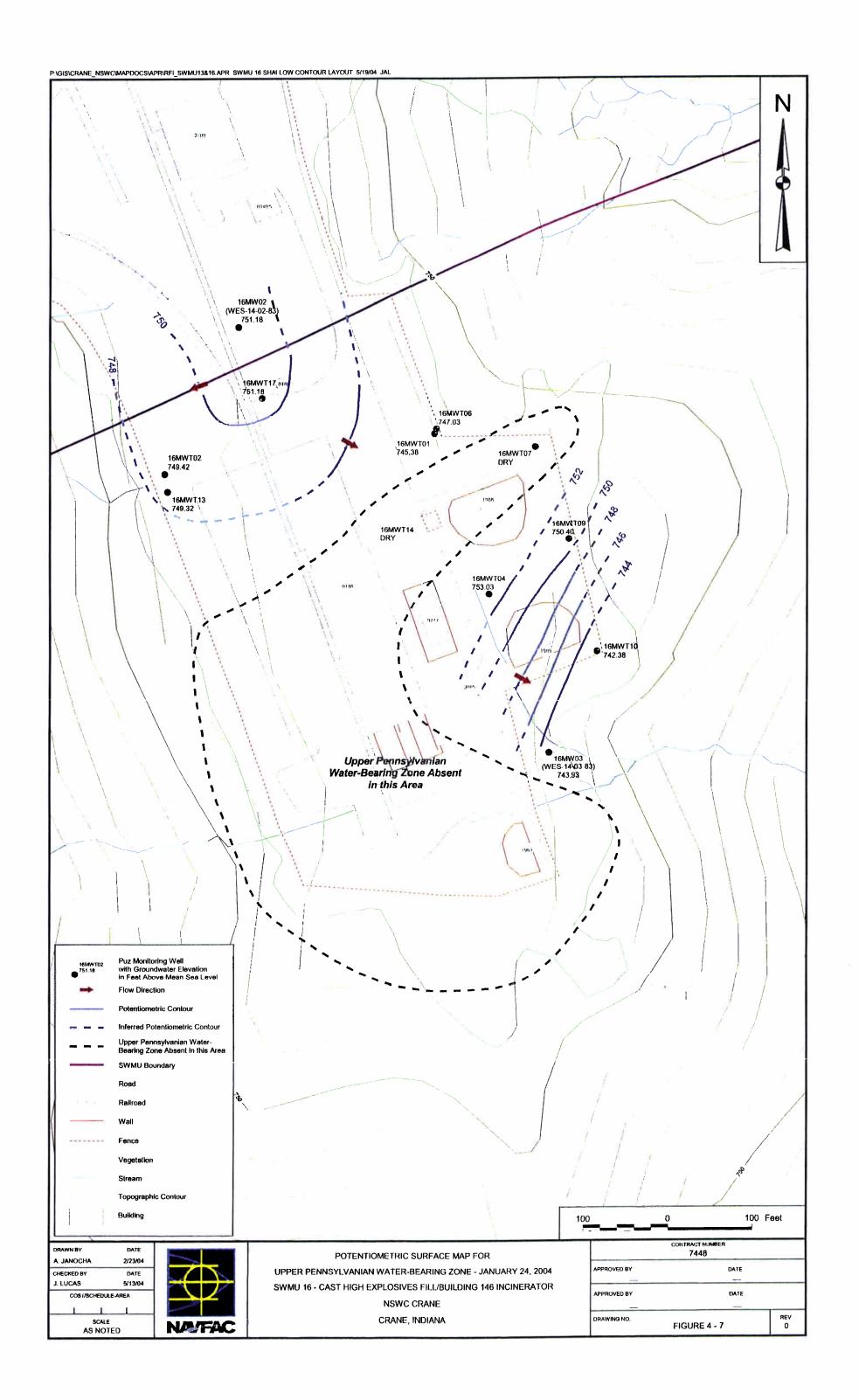
GROUNDWATER POTENTIOMETRIC SURFACE MAPS

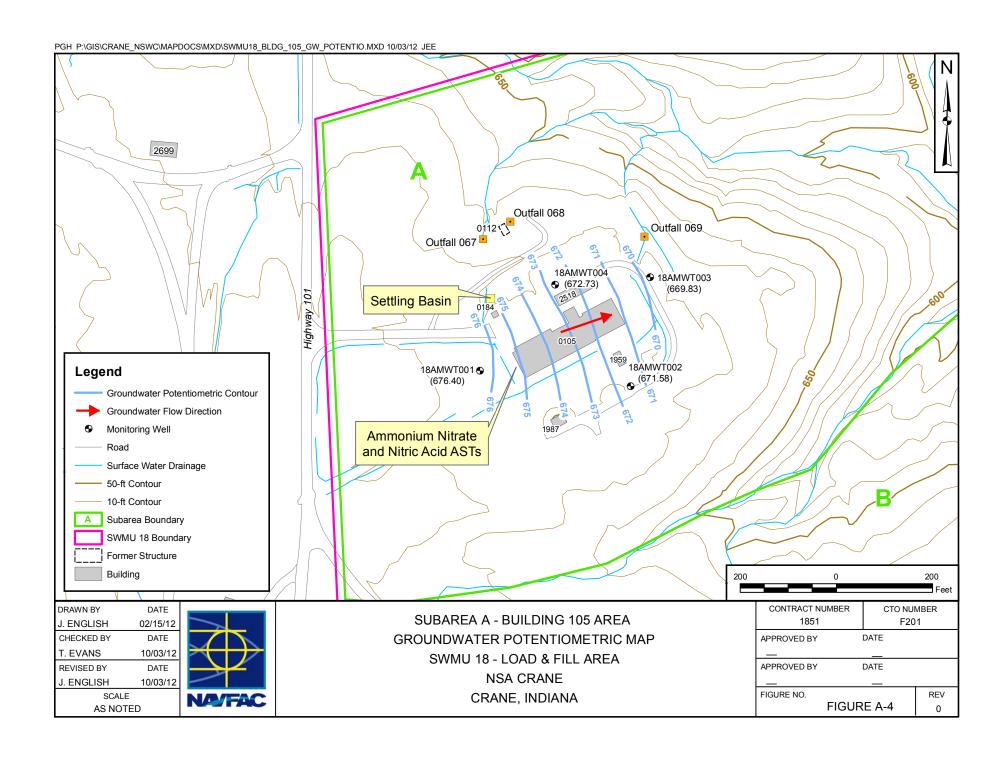


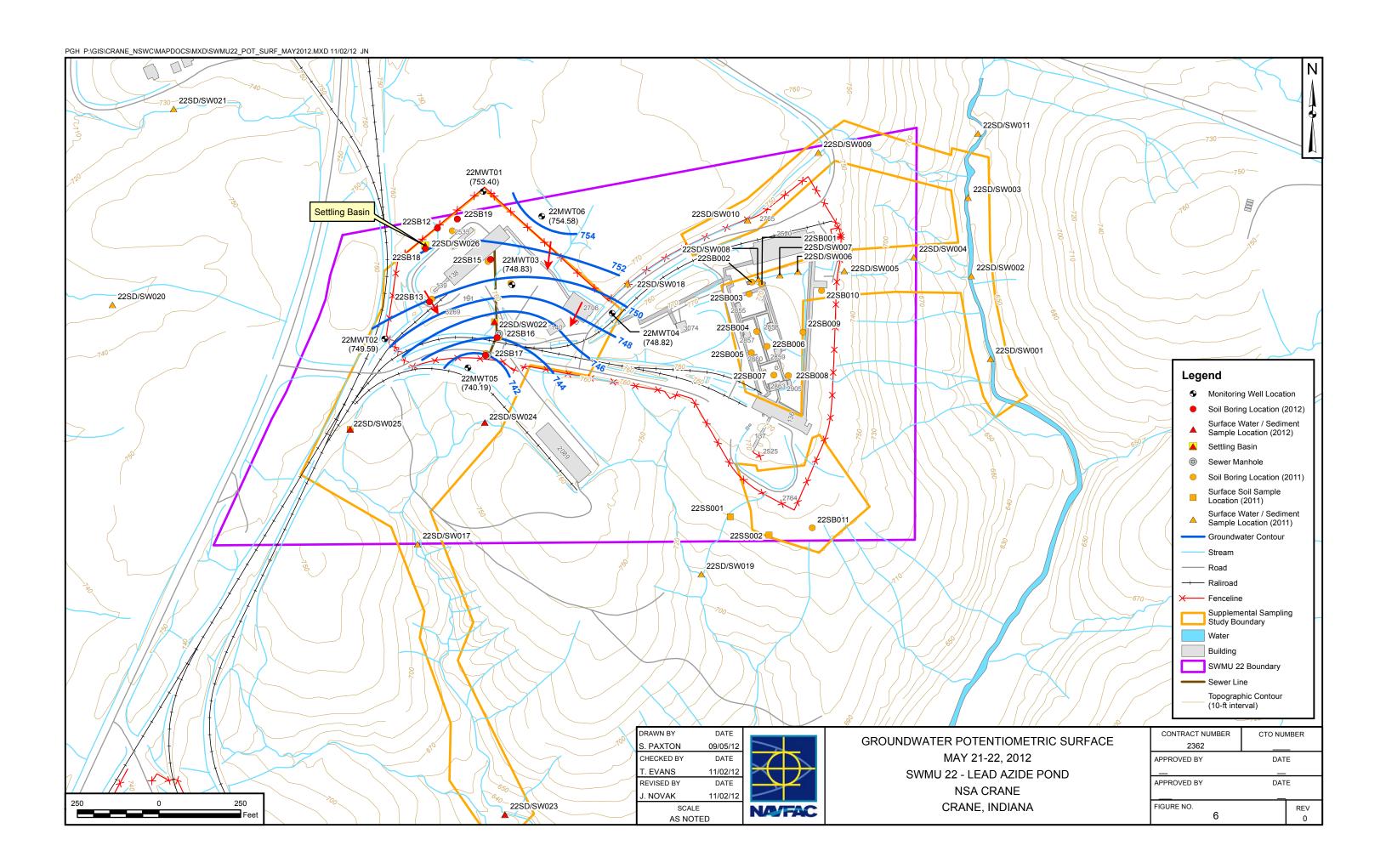

NSWC CRANE


CRANE, INDIANA


SCALE AS NOTED DRAWING NO. FIGURE 1 - 5


REV 0





APPENDIX E

STATISTICAL ANALYSIS

STATISTICAL EVALUATION

Total inorganics data from upgradient monitoring wells in the Pennsylvanian bedrock at NSA Crane were evaluated to determine background concentrations. This section presents the data analysis and results of the statistical evaluations performed to establish the background data set for groundwater in the Pennsylvanian bedrock at NSA Crane. The statistical software package R version 2.15.0 and ProUCL version 4.1.1 were used for the statistical evaluations presented in this section.

The first step in determining the background data set is to evaluate the data for potential outliers. Potential outliers are measurements that are extremely large or small relative to the rest of the data and therefore are suspected of misrepresenting the population from which they were collected. Potential outliers may be a result of transcription errors, data-coding errors, or measurement system problems. However, outliers may represent true extreme values of a distribution and indicate more variability in the population than was expected.

Potential outliers were identified using boxplots (see Figures 1 through 22). Boxplots show the central tendency, degree of symmetry, range of variation, and potential outliers of a data set. The data set is shown as a rectangular box that represents the middle 50 percent of the data. The upper value of the box represents the 75th percentile and the lower value of the box represents the 25th percentile. The median is represented by the middle line in the box. Outliers on the box and whisker plots were plotted as circles.

Potential outliers were investigated using a formal outlier test (Rosner's Test, or Nonparametric Test). The following rationale was used to determine which if any outlier hypothesis tests to use to investigate the points identified on the boxplots:

- If the data were more than 90% non-detect no evaluation and the data point was retained in the data set
- If the data were lognormal or normal, there were less than 15 % non-detects, and more than 25 samples Rosner's Test was computed.
- If the data were not normal or lognormal and all detected the non-parametric outlier test was computed.
- If the data were lognormal or normal and there were between 15 and 90 percent the nonparametric outlier test.

Details of Rosner's Test can be found in EPA's Data Quality Assessment: Statistical Methods for Practitioners and details of the nonparametric outlier test can be found in Handbook of Parametric and Nonparametric Statistical Procedures. Both hypothesis tests test the Null Hypothesis that there are outliers present versus the alternative hypothesis that outliers are not present. For the parametric tests a five percent significance level was used. For the non-parametric test outliers were considered statistically significant when the test statistic, $\frac{|x_i-meidan|}{Median\ Absolute\ Difference}$, was greater than 5.

The data distribution was determined using the following rationale:

- If the data were more than 50 percent non-detect assume nonparametric.
- If the Shapiro Wilk test on raw data concludes normal, data are normally distributed.
- If the Shapiro Wilk Test on natural log of data concludes lognormal, data are lognormally distributed.
- If the Shapiro Wilk test on raw and natural log data determined that the data are not normal or lognormally distributed then the data are nonparametric.

As noted in USEPA's Data Quality Assessment: Statistical Methods for Practitioners, "Statistical outlier test give the analyst probabilistic evidence that an extreme value does not "fit" with the distribution of the remainder of the data and is therefore a statistical outlier. These tests should only be used to identify data points that require further investigation. The tests alone cannot determine whether a statistical outlier should be discarded or corrected within a data set. This decision should be based on judgmental or scientific grounds."

Table 1 presents the frequency of detection (FOD), percent detected, number of outliers evaluated, the data distribution of the data without the suspected outlier, the outlier test computed, and the conclusion of the outlier test. Tables 2 and 3 present the results of Rosner's Test and the nonparametric test respectively.

After the statistically significant outliers were identified the wells with identified were investigated to see if there was a scientific reason (i.e., well location, turbidity) that identified outliers should not be included in the background dataset. Statistically significant outliers were identified in 7 samples (12GWT2501, 13GWT0301, 13GWT2801, 16GWT1701, 18IGWT001, 18AGWT001, 18GGWT004, and 22GWTW001).

- Data from sample 22GWTW001 was retained in the background dataset. The identified outlier
 was for lead, the majority of the data for lead are non-detect with low detections. However, there
 is no information that indicates that the outlier is not representative of actual background
 conditions.
- Data from sample 12GWT2501 was retained in the background dataset. The identified outlier
 was for selenium; the majority of the data for selenium are non-detect with low detections.
 However there is no information that indicates that the outlier is not representative of actual
 background conditions.
- Data from samples 13GWT0301 and 13GWT2801 were retained in the background dataset.
 There is no information that indicates that the outlier is not representative of actual background conditions.
- Data from sample 16GWT1701 were retained in the background dataset. There is no information that indicates that the outlier is not representative of actual background conditions.
- Data from samples18IGWT001, 18AGWT001, and 18GGWT004 were retained in the background dataset. There is no information that indicates that the outliers are not representative of actual background conditions.

After the data sets were evaluated for any potential outliers, basic summary statistics [FOD, range of non-detects, minimum detected concentration, maximum detected concentration, and 95% upper tolerance limit with 95 percent coverage(UTL)] were computed and are presented in Table 4. The 95% UTL is the upper value of the limit that covers 95 percent of the population with a 95%confidence. ProUCL version 4.1.1 was used to calculate the 95% UTLs. The following rationale was used to determine which UTL to use from the ProUCL output.

- If all data detected and data distribution is Normal 95% UTL with 95% coverage from normal statistics output is used.
- If all data are detected and data distribution is not Normal 95% UTL with 95% coverage from nonparametric output is used.

• If any data are non-detected 95% Kaplan Meier UTL with 95% coverage from nonparametric

output is used.

REFERENCES

R Development Core Team, 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.

Sheskin, David. 2004. Handbook of Parametric and Nonparametric Statistical Procedures, Third Edition.

USEPA, 2006. Data Quality Assessment: Statistical Methods for Practitioners EPA QA/G-9S. EPA/240/B-06/003Office of Environmental Information Washington D.C.

TABLE 1 OUTLIER TESTS AND CONCLUSIONS PENNSYLVANIAN WELL BACKGROUND GROUNDWATER EVALUATION

PARAMETER	FOD	NUMBER OF POTENTIAL OUTLIERS	NORMAL P-VALUE	LOGNORMAL P- VALUE	DATA DISTRIBUTION	OUTLIER TEST ⁽¹⁾	CONCLUSION
TOTAL METALS							
TOTAL ALUMINUM	19/28	5	0.004944	0.02689	Nonparametric	Nonparametric Test	18IGWT001, 13GWT2801, 18GGWT004, 13GWT0301, and 18AGWT001 are statistically signficant outliers.
TOTAL ANTIMONY	1/28	3	NA	NA	Assumed Nonparametric	No Evaluation	NA
TOTAL ARSENIC	12/29	4	NA	NA	Assumed Nonparametric	Nonparametric Test	13GWT2801, 18GGWT004, and 18IGWT001 are statistically significant outliers.
TOTAL BARIUM	27/29	0	0.005937	0.05668	Log-Normal	Parametric Test	No Outliers
TOTAL BERYLLIUM	6/28	1	NA	NA	Assumed Nonparametric	Nonparametric Test	No Statistically Significant Outliers
TOTAL CADMIUM	3/29	0	NA	NA	Assumed Nonparametric	Nonparametric Test	No Outliers
TOTAL CALCIUM	28/28	2	0.002309	0.6476	Log-Normal	Parametric Test	No Statistically Significant Outliers
TOTAL CHROMIUM	9/29	2	NA	NA	Assumed Nonparametric	Nonparametric Test	18IGWT001 and 13GWT2801 are a Statistically Signifcant Outliers
TOTAL COBALT	21/28	0	0.005057	0.03454	Nonparametric	Nonparametric Test	No Outliers
TOTAL COPPER	17/28	3	0.1408	0.008892	Normal	Nonparametric Test	18GGWT004, 18IGWT001 and 18AGWT001 are statistically signifcant outliers
TOTAL IRON	25/28	5	2.12E-07	0.7755	Log-Normal	Parametric Test	No Statistically Significant Outliers
TOTAL LEAD	4/29	4	NA	NA	Assumed Nonparametric	Nonparametric Test	18IGWT001, 18GGWT004, 22GWT001, and 13GWT2801 are Statistically Signficant Outliers.
TOTAL MAGNESIUM	28/28	3	0.001005	0.8603	Log-Normal	Parametric Test	No Statistically Significant Outliers
TOTAL MANGANESE	27/28	2	0.00287	0.03736	Nonparametric	Nonparametric Test	16GWT1701 and 12GWT2501 are Statistically Signficant Outliers.
TOTAL MERCURY	2/29	0	NA	NA	Assumed Nonparametric	No Evaluation	No Outliers
TOTAL NICKEL	24/28	0	0.002705	0.1035	Log-Normal	Parametric Test	No Outliers
TOTAL POTASSIUM	22/28	0	0.005042	0.0002762	Nonparametric	Nonparametric Test	No Outliers
TOTAL SELENIUM	7/29	4	NA	NA	Assumed Nonparametric	Nonparametric Test	13TWT2801, 12GWT2501, 18IGWT001, and 18GGWT004 are Statistically Significant Outliers
TOTAL SILVER	0/29	6	NA	NA	Assumed Nonparametric	No Evaluation	NA
TOTAL SODIUM	28/28	0	0.0007477	0.3086	Log-Normal	Parametric Test	No Outliers
TOTAL THALLIUM	1/28	1	NA	NA	Assumed Nonparametric	No Evaluation	NA
TOTAL TIN	0/24	1	NA	NA	Assumed Nonparametric	No Evaluation	NA
TOTAL VANADIUM	5/28	4	NA	NA	Assumed Nonparametric	Nonparametric Test	18IGWT001, 18GGWT004,13GW2801, and 13GWT0301 are Statistically Signficant Outliers.
TOTAL ZINC	23/28	0	0.0001904	0.3981	Log-Normal	Nonparametric Test	No Outliers

Footnotes:

- (1) If the data were lognormal or normal and there were less than 15% non-detects and the sample size was 25 Extreme Value Test was computed. If the data were not lognormal or normal or if 10 to 50 percent of the data was detected the nonparametric outlier test was computed.
- (2) When at least 90 percent of the data is non-detect formal hypothesis tests are not appropriate.
- (3) There are additional uncertainties associated with hypothesis tests when between 50 and 90 percent of the data is non-detect.

Acronyms:

FOD = Frequency of Detection

NA = Not Applicable

TABLE 2 ROSNER'S OUTLIER TEST PENNSYLVANIAN WELL BACKGROUND GROUNDWATER EVALUATION

	Outlier Sample	Outlier	Test		
PARAMETER	ID	result	Statistic	Critical Value	Conclusion
TOTAL CALCIUM	12GWT2501	216000	1.76	2.88	No Outliers
TOTAL CALCIUM	16GW0203	212000	1.89	2.86	No Outliers
	12GWT3301	41800	1.66	2.88	No Outliers
	12GWT3302	41700	1.79	2.86	No Outliers
TOTAL IRON	16GWT1701	27000	1.73	2.84	No Outliers
	18IGWT001	22500	1.79	2.82	No Outliers
	10GWC5201	2220	1.96	2.8	No Outliers
	12GWT2501	229000	2.3	2.89	No Outliers
TOTAL MAGNESIUM	01GW0601	156000	2.23	2.88	No Outliers
	12GWT2502	153000	2.52	2.86	No Outliers

A five percent signifcance level was used.

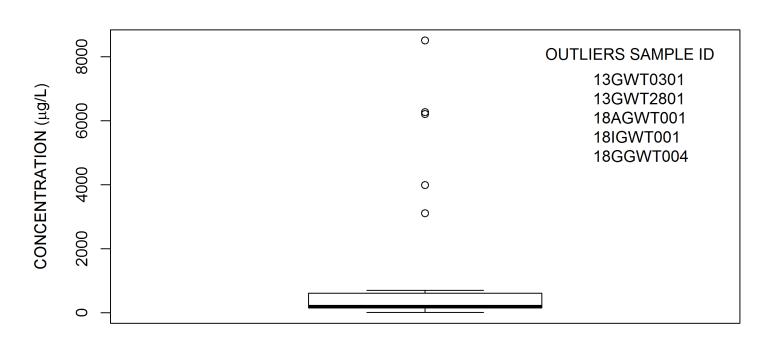
TABLE 3
NONPARAMETRIC OUTLIER TEST
PENNSYLVANIAN WELL BACKGROUND GROUNDWATER EVALUATION

PARAMETER	Outlier Sample ID	Outlier result	Test Statistic	Critical Value	Conclusion
	18IGWT001	8500	51.4	5	Outlier
	13GWT2801	6270	38	5	Outlier
TOTAL ALUMINUM	18GGWT004	6210	40.2	5	Outlier
	13GWT0301	3990	27.2	5	Outlier
	18AGWT001	3110	22.2	5	Outlier
	13GWT2801	15.2	25.8	5	Outlier
TOTAL ARSENIC	18GGWT004	8.61	14.5	5	Outlier
TOTAL ARSENIC	18IGWT001	8.28	14.6	5	Outlier
	01GW0601	3.2	4.4	5	Not Outlier
TOTAL BERYLLIUM	18AGWT001	3.01	4.3	5	Not Outlier
TOTAL CHROMIUM	18IGWT001	26.2	41.3	5	Outlier
TOTAL CHROIVIIOIVI	13GWT2801	11.7	21.4	5	Outlier
	18GGWT004	21.6	17.1	5	Outlier
TOTAL COPPER	18IGWT001	16.6	12.9	5	Outlier
	18AGWT001	12.3	9.2	5	Outlier
	18IGWT001	15.5	38.8	5	Outlier Outlier
TOTAL LEAD	18GGWT004	11.7	30.8	5	Outlier
TOTAL LEAD	22GWT001	3.2	7.4	5	Outlier
	13GWT2801	2.5	6.1	5 Outlier 5 Outlier 5 Outlier 5 Outlier 5 Outlier 5 Outlier 5 Outlier 5 Outlier 5 Outlier 5 Not Outlier 5 Not Outlier 5 Outlier 5 Outlier 5 Outlier 5 Outlier 5 Outlier 5 Outlier 5 Outlier 5 Outlier 5 Outlier 5 Outlier 5 Outlier	Outlier
TOTAL NAANCANIECE	16GWT1701	5940	7.9	5	Outlier
TOTAL MANGANESE	12GWT2501	4910	7.4	5	Outlier Outlier Outlier Outlier Outlier Outlier Outlier Outlier Not Outlier Not Outlier
	13GWT2801	4.1	7.1	5	
TOTAL CELENIUM	12GWT2501	3.4	6.1	5	Outlier
TOTAL SELENIUM	18IGWT001	2.5	5.1	5	Outlier
	18GGWT004 2	2.5	5.7	5	Outlier
	18IGWT001	17.9	19.5	5	Outlier
TOTAL MANIADUMA	13GWT2801	12.5	13.2	5	Outlier
TOTAL VANADIUM	18GGWT004	7.47	7.4	5	Outlier
	13GWT0301	5.8	5.4	5	Outlier

TABLE 4 SUMMARY STATISTICS PENNSYLVANIAN WELL BACKGROUND GROUNDWATER EVALUATION

PARAMETER	FOD	RANGE OF DETECTION LIMITS	MINIMUM DETECTED CONCENTRATION	MAXIMUM DETECTED CONCENTRATION	LOCATION OF MAXIMUM DETECTED CONCENTRATION	DATA DISTRIBUTION ⁽¹⁾	UTL ^(2,3)
TOTAL ALUMINUM	19/28	8.3 - 200	28.5	8500	18IGWT001	Log-Normal	6183
TOTAL ANTIMONY	1/28	0.02 - 4	2.9	2.9	13GWT2801	Assumed Nonparametric	NA
TOTAL ARSENIC	12/29	0.16 - 3.2	0.66	15.2	13GWT2801	Assumed Nonparametric	9.1
TOTAL BARIUM	27/29	12.8 - 15.6	13.2	97.5	18IGWT001	Log-Normal	96.9
TOTAL BERYLLIUM	6/28	0.02 - 1.8	0.1	3.01	18AGWT001	Assumed Nonparametric	2 (4)
TOTAL CADMIUM	3/29	0.039 - 1	0.08	0.9	22GWT001	Assumed Nonparametric	0.55 (4)
TOTAL CALCIUM	28/28	NA	7190	216000	12GWT2501	Log-Normal	216000
TOTAL CHROMIUM	9/29	0.17 - 5	0.58	26.2	18IGWT001	Assumed Nonparametric	14.6 ⁽⁴⁾
TOTAL COBALT	21/28	1 - 3	2	64.4	16GWT1701	Nonparametric	65.5
TOTAL COPPER	17/28	0.12 - 2.1	0.67	21.6	18GGWT004	Log-Normal	14.6
TOTAL IRON	25/28	61.7 - 344	12.7	41800	12GWT3301	Log-Normal	34500
TOTAL LEAD	4/29	0.157 - 2.5	0.54	15.5	18IGWT001	Assumed Nonparametric	9 (4)
TOTAL MAGNESIUM	28/28	NA	2950	229000	12GWT2501	Log-Normal	229000
TOTAL MANGANESE	27/28	566 - 566	6.89	5940	16GWT1701	Log-Normal	4470
TOTAL MERCURY	2/29	0.007 - 0.2	0.16	0.39	13GWT0102	Assumed Nonparametric	NA
TOTAL NICKEL	24/28	10 - 10	1.56	131	12GWT3301	Log-Normal	135
TOTAL POTASSIUM	22/28	3390 - 5000	403	5380	16GWT1701	Nonparametric	6450
TOTAL SELENIUM	7/29	0.04 - 2.5	0.33	4.1	13GWT2801	Assumed Nonparametric	2.7 (4)
TOTAL SILVER	0/29	0.028 - 3			All Non-Detect	Assumed Nonparametric	NA
TOTAL SODIUM	28/28	NA	10100	165000	12GWT2601	Log-Normal	165000
TOTAL THALLIUM	1/28	0.04 - 5	0.08	0.08	12GWT2501	Assumed Nonparametric	NA
TOTAL TIN	0/24	0.048 - 190			All Non-Detect	Assumed Nonparametric	NA
TOTAL VANADIUM	5/28	0.06 - 3	2.1	17.9	18IGWT001	Assumed Nonparametric	11.4 (4)
TOTAL ZINC	23/28	1.1 - 10	2.16	161	13GWT0301	Log-Normal	140

- (1) Data distribution deteremined using Shaprio Wilk Test with a five percent significance level.
- (2) UTLS are presented using three significant figures if the value is greater than 10 otherwise 2 significant figures were presented.
- (3) UTLS were calculated using ProUCL version 4.1.1. For Assumed nonparametric the 95% KM UTL is presented.
- (4) ProUCL warns that there may not be enough detected concentrations for the calculations to be reliable enough to draw conclusions.
- (5) There is only one detected concentration. Computing sumary statistics is not approporiate.


Rationale for UTL Selected from ProUCL Output

If all data detected and data distribution is not Normal use Nonparamtric 95% UTL with 95% Coverage.

If any data are non-detect 95% Kaplain Meier UTL with 95% Coverage.

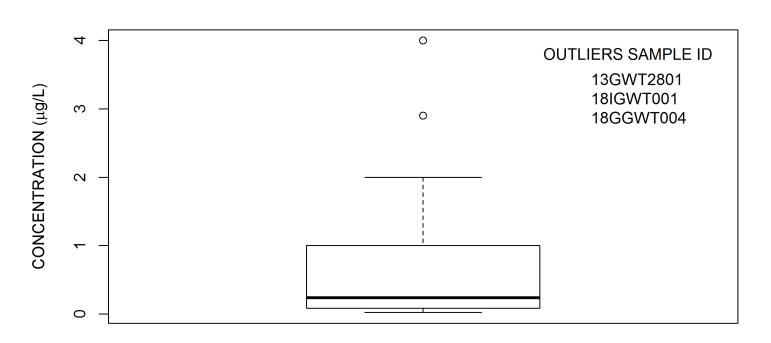

UTL = Upper Tolerance Limit NA = Not Applicable

FIGURE 1 TOTAL ALUMINUM BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA

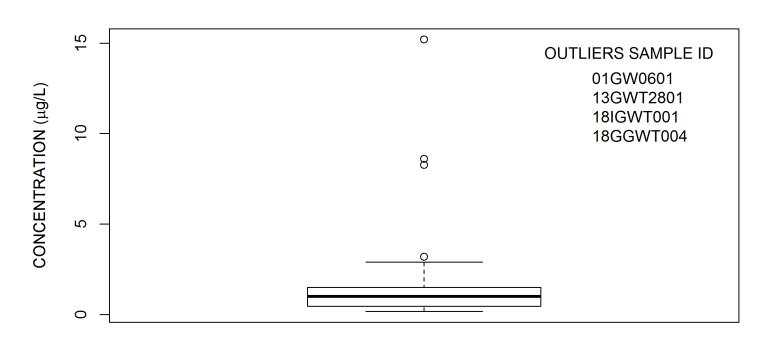

TOTAL ALUMINUM

FIGURE 2 TOTAL ANTIMONY BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA

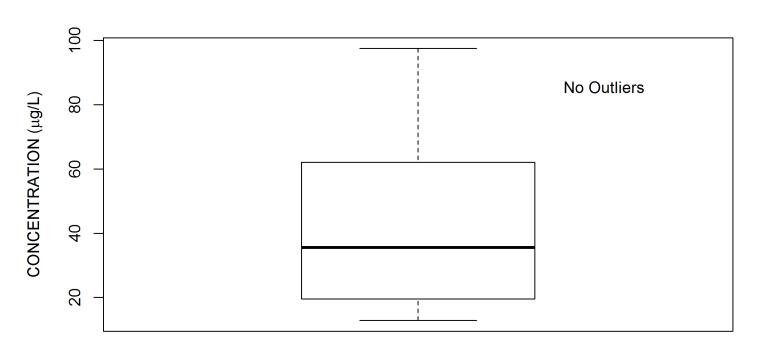

TOTAL ANTIMONY

FIGURE 3 TOTAL ARSENIC BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA

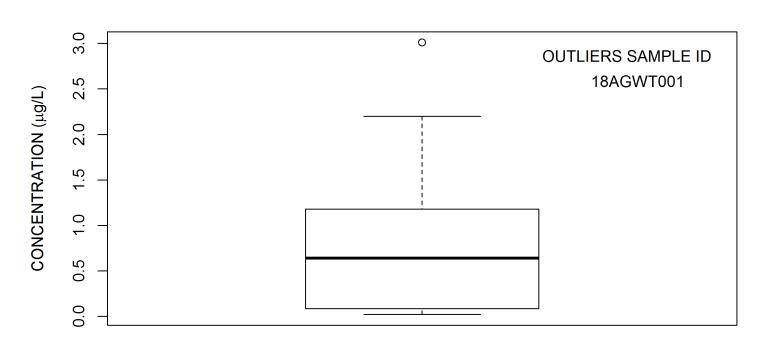

TOTAL ARSENIC

FIGURE 4 TOTAL BARIUM BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA

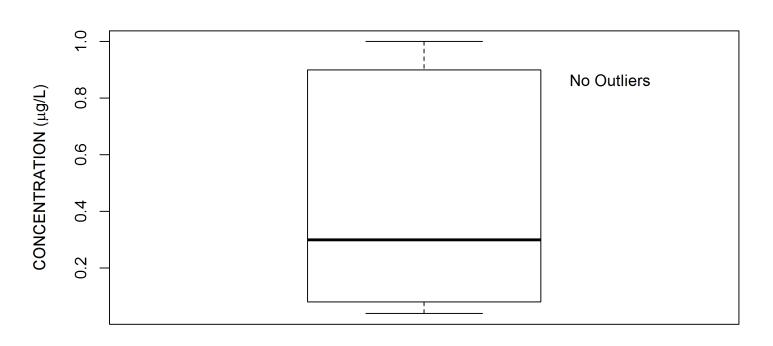

TOTAL BARIUM

FIGURE 5 TOTAL BERYLLIUM BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA

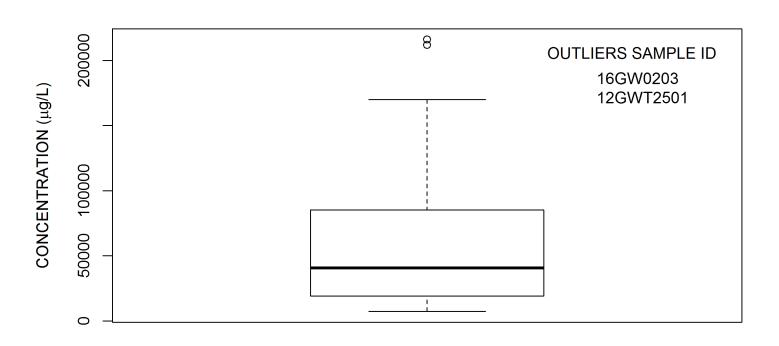

TOTAL BERYLLIUM

FIGURE 6 TOTAL CADMIUM BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA

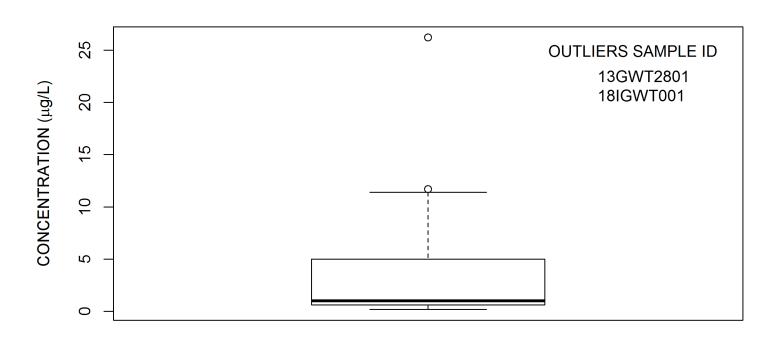

TOTAL CADMIUM

FIGURE 7 TOTAL CALCIUM BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA

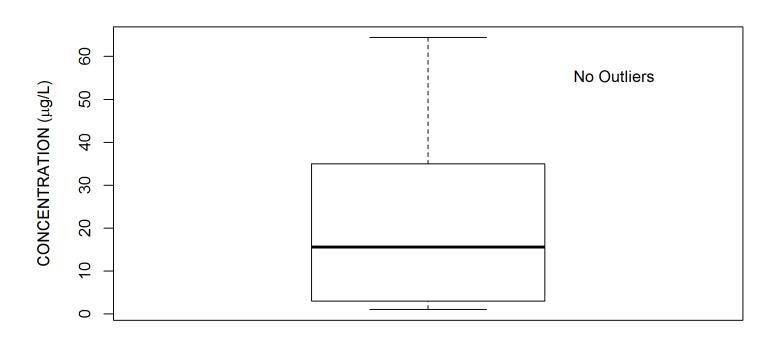

TOTAL CALCIUM

FIGURE 8 TOTAL CHROMIUM BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA

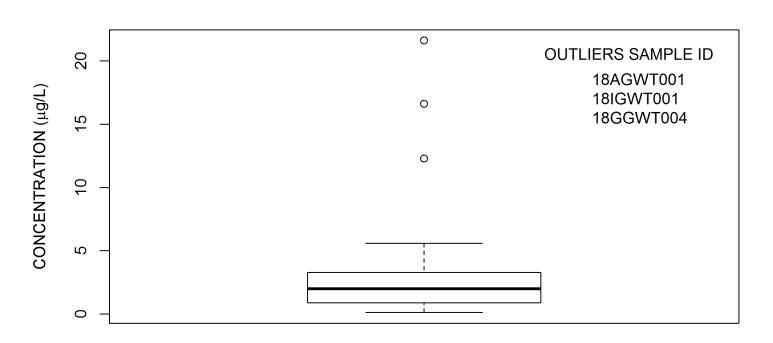

TOTAL CHROMIUM

FIGURE 9 TOTAL COBALT BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA

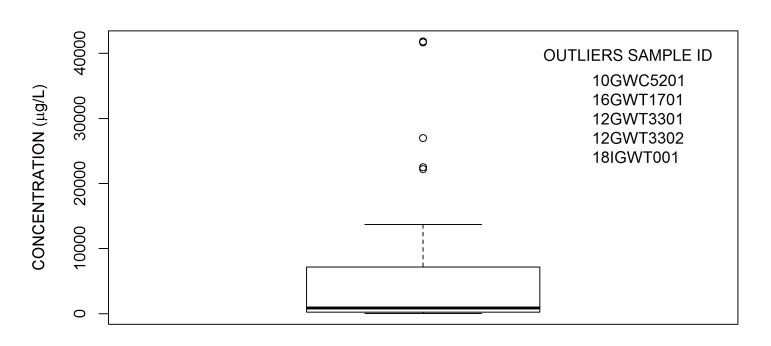

TOTAL COBALT

FIGURE 10 TOTAL COPPER BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA

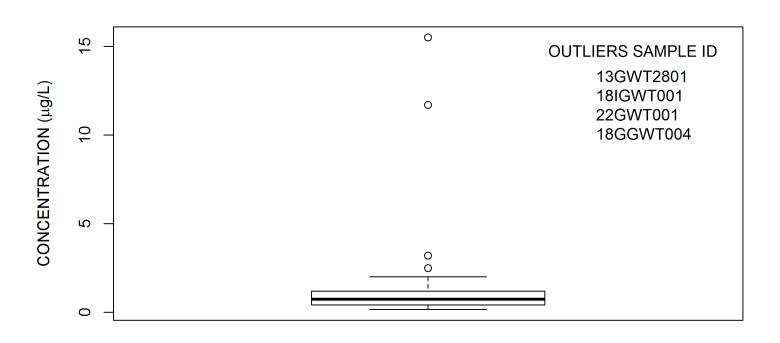

TOTAL COPPER

FIGURE 11 TOTAL IRON BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA

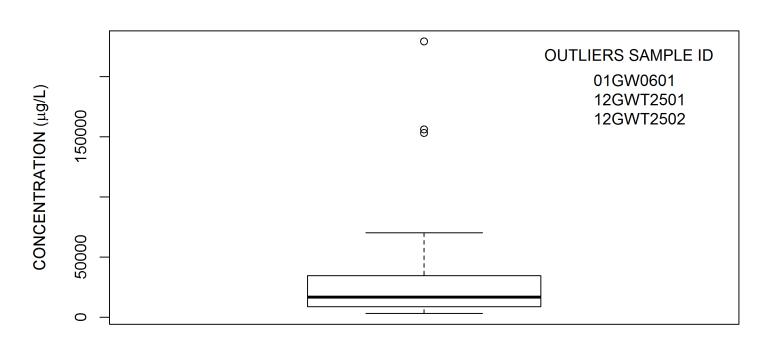

TOTAL IRON

FIGURE 12 TOTAL LEAD BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA

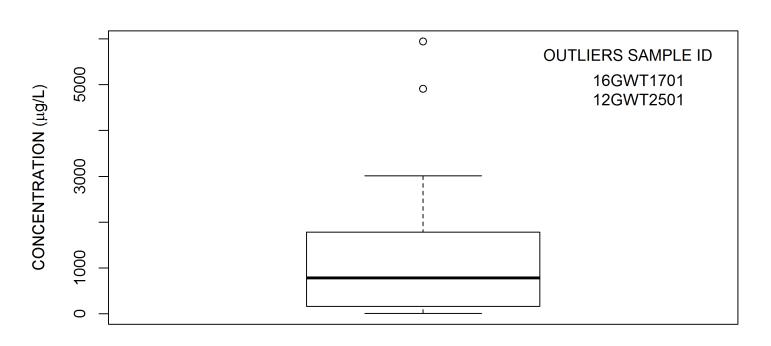

TOTAL LEAD

FIGURE 13 TOTAL MAGNESIUM BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA

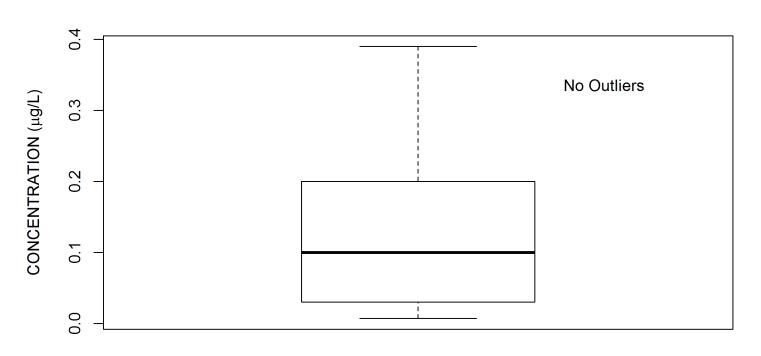

TOTAL MAGNESIUM

FIGURE 14 TOTAL MANGANESE BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA

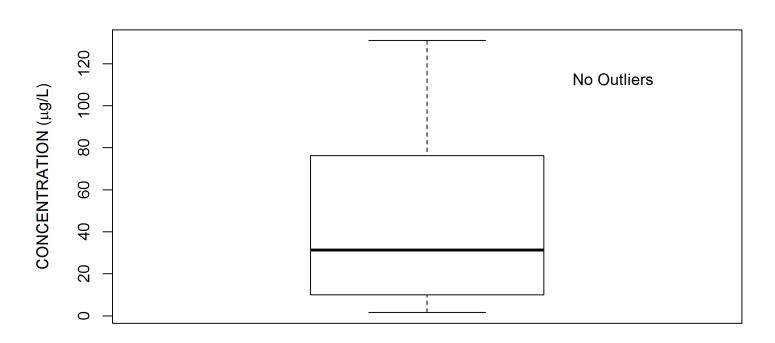

TOTAL MANGANESE

FIGURE 15 TOTAL MERCURY BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA

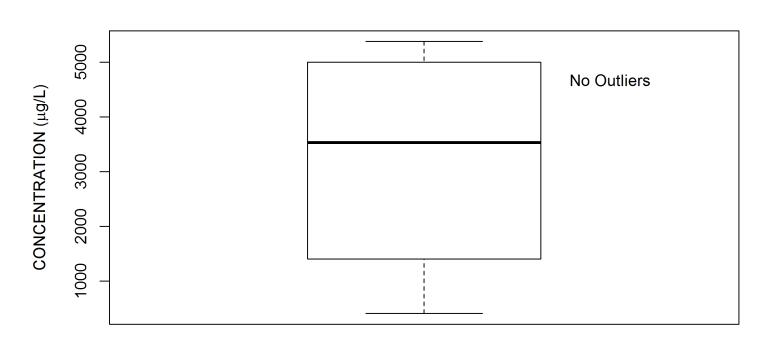

TOTAL MERCURY

FIGURE 16 TOTAL NICKEL BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA

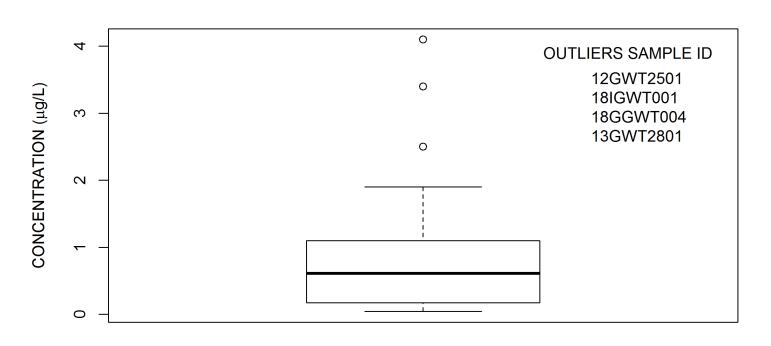

TOTAL NICKEL

FIGURE 17 TOTAL POTASSIUM BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA

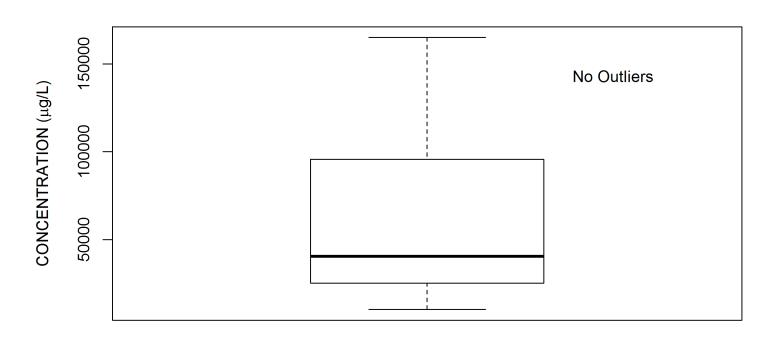

TOTAL POTASSIUM

FIGURE 18 TOTAL SELENIUM BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA

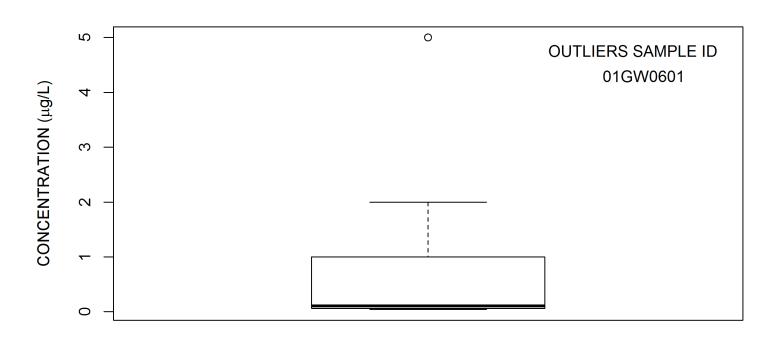

TOTAL SELENIUM

FIGURE 19 TOTAL SODIUM BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA

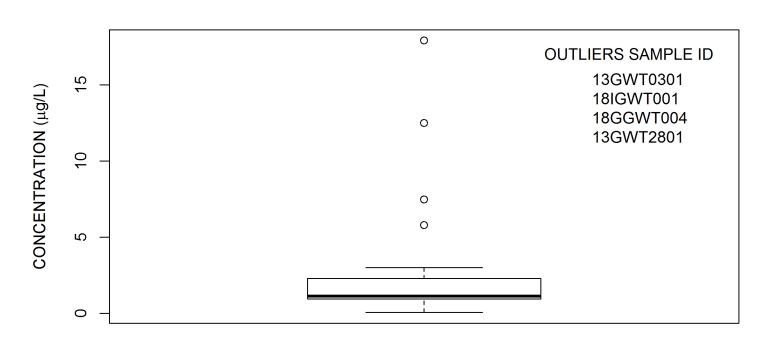

TOTAL SODIUM

FIGURE 20 TOTAL THALLIUM BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA

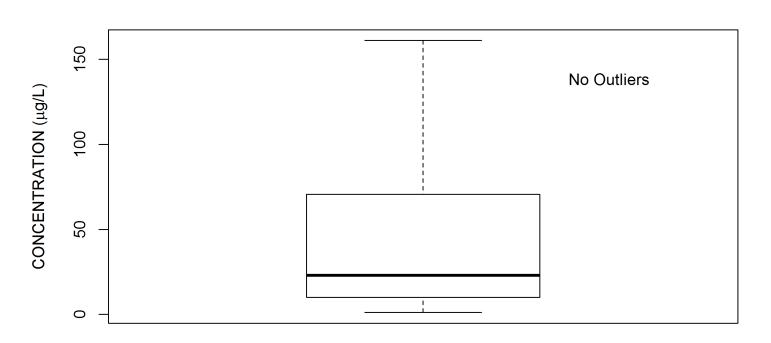

TOTAL THALLIUM

FIGURE 21 TOTAL VANADIUM BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA

TOTAL VANADIUM

FIGURE 22 TOTAL ZINC BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA

TOTAL ZINC

Samples	SACODE	ALUMINUM	d_ALUMINUM	ANTIMONY	d_ANTIMONY	ARSENIC	d_ARSENIC	BARIUM	d_BARIUM
01GW0601	NORMAL	40.2	0	1.6	0	3.2	0	21.3	1
08GWT00701	NORMAL	463	1	0.2	0	0.45	0	19.5	1
09GW1001	NORMAL	200	0	1	0	0.75	1	68.4	1
09GWT0101	NORMAL	200	0	1	0	2.9	1	52.6	1
09GWT0501	NORMAL	200	0	1	0	1.5	1	90.7	1
09GWTP0601	NORMAL	200	0	1	0	1	0	19.3	1
10GWC5201	NORMAL	200	0	1	0	1	0	17.9	1
12GWT2501	NORMAL	479	1	0.085	0	1.1	1	26.2	1
12GWT2502	NORMAL	192	1	0.085	0	0.27	0	21.8	1
12GWT2601	NORMAL	565	1	0.24	0	2.3	1	38.4	1
12GWT2602	NORMAL	126	1	0.54	0	0.67	0	12.8	0
12GWT2701	NORMAL	323	1	0.22	0	0.58	0	39.1	1
12GWT2702	NORMAL	205	1	0.1	0	0.22	0	20.6	1
12GWT3301	NORMAL	37.1	0	0.52	0	2.7	1	13.2	1
12GWT3302	NORMAL	200	1	0.085	0	1.2	0	15.6	0
13GWT0101	NORMAL	598	1	0.24	0	0.23	0	55.4	1
13GWT0102	NORMAL	699	1	0.02	0	0.17	0	46.8	1
13GWT0301	NORMAL	3990	1	0.13	0	1	1	74.5	1
13GWT0302	NORMAL	627	1	0.02	0	0.31	0	62.1	1
13GWT2801	NORMAL	6270	1	2.9	1	15.2	1	65.3	1
16GW0201	NORMAL	85.6	1	0.1	0	0.16	0	21.6	1
16GW0202	NORMAL	60.6	0	0.03	0	0.33	0	18	1
16GW0203	NORMAL	8.3	0	0.02	0	0.66	1	17.8	1
16GWT1701	NORMAL	187	1	0.05	0	1.3	0	42.7	1
18AGWT001	NORMAL	3110	1	2	0	1.5	0	35.6	1
18DGWT001	NORMAL	28.5	1	2	0	1.5	0	75.6	1
18GGWT004	NORMAL	6210	1	4	0	8.61	1	74.6	1
18IGWT001	NORMAL	8500	1	4	0	8.28	1	97.5	1
22GWT001	NORMAL					1.4	1	34.2	1

Samples	BERYLLIUM	d_BERYLLIUM	CADMIUM	d_CADMIUM	CALCIUM	d_CALCIUM	CHROMIUM	d_CHROMIUM
01GW0601	0.4	0	0.3	0	170000	1	0.6	0
08GWT00701	0.05	0	0.08	1	9640	1	0.58	1
09GW1001	1	0	1	0	25800	1	5	0
09GWT0101	1	0	1	0	39400	1	5	0
09GWT0501	1	0	1	0	24000	1	5	0
09GWTP0601	1	0	1	0	59300	1	5	0
10GWC5201	1	0	1	0	17000	1	5	0
12GWT2501	0.1	1	0.14	0	216000	1	1.4	0
12GWT2502	0.04	0	0.04	0	125000	1	0.74	0
12GWT2601	0.07	0	0.11	0	92600	1	1.7	1
12GWT2602	0.03	0	0.13	0	77900	1	0.72	0
12GWT2701	0.03	0	0.05	0	21200	1	1.2	1
12GWT2702	0.02	0	0.04	0	16300	1	0.62	0
12GWT3301	1.3	1	0.039	0	61100	1	0.52	0
12GWT3302	2.2	1	0.18	0	56400	1	0.76	0
13GWT0101	1.2	0	0.18	0	9720	1	0.2	0
13GWT0102	1.2	0	0.06	0	7190	1	0.73	0
13GWT0301	1.2	0	0.82	0	34800	1	7.1	1
13GWT0302	1.8	0	0.37	0	26100	1	1.4	0
13GWT2801	0.27	0	0.04	0	10600	1	11.7	1
16GW0201	0.42	0	0.31	0	99400	1	0.43	0
16GW0202	0.34	0	0.22	0	97300	1	0.29	0
16GW0203	0.06	0	0.04	0	212000	1	0.17	0
16GWT1701	0.69	0	0.53	0	42200	1	0.39	0
18AGWT001	3.01	1	0.462	1	12300	1	0.816	1
18DGWT001	0.5	0	0.5	0	43900	1	1	0
18GGWT004	1.16	1	1	0	24200	1	11.4	1
18IGWT001	0.591	1	1	0	61000	1	26.2	1
22GWT001			0.9	1			4	1

Samples	COBALT	d_COBALT	COPPER	d_COPPER	IRON	d_IRON	LEAD	d_LEAD
01GW0601	1	0	0.9	0	398	1	1.6	0
08GWT00701	5.3	1	2.1	0	681	1	0.54	1
09GW1001	3	0	2	0	136	1	1	0
09GWT0101	3	0	4.4	1	144	1	1	0
09GWT0501	18.2	1	2	1	100	0	1	0
09GWTP0601	3	0	2	0	149	1	1	0
10GWC5201	3	0	2	0	22200	1	1	0
12GWT2501	53.2	1	3	1	1920	1	0.66	0
12GWT2502	12.9	1	3.4	1	1110	1	0.425	0
12GWT2601	31.3	1	0.84	1	2990	1	0.53	0
12GWT2602	5.6	1	3.5	1	2010	1	0.157	0
12GWT2701	11.2	1	0.67	1	482	1	0.37	0
12GWT2702	1.2	0	2	1	396	1	0.42	0
12GWT3301	44.4	1	0.7	1	41800	1	0.34	0
12GWT3302	40	1	2.5	1	41700	1	1	0
13GWT0101	36	1	2.9	1	135	1	1.4	0
13GWT0102	29.9	1	1.4	0	61.7	0	1.2	0
13GWT0301	48.8	1	5.6	1	1910	1	2	0
13GWT0302	25	1	3.2	1	344	0	0.67	0
13GWT2801	2	1	1.4	0	2460	1	2.5	0
16GW0201	12.9	1	0.87	1	287	1	0.21	0
16GW0202	9.2	1	0.15	0	415	1	0.28	0
16GW0203	18.7	1	0.12	0	13700	1	0.18	0
16GWT1701	64.4	1	0.56	0	27000	1	0.24	0
18AGWT001	62	1	12.3	1	1970	1	0.75	0
18DGWT001	2.5	0	2	0	12.7	1	0.75	0
18GGWT004	34	1	21.6	1	11300	1	11.7	1
18IGWT001	27.2	1	16.6	1	22500	1	15.5	1
22GWT001							3.2	1

Samples	LITHIUM	d_LITHIUM	MAGNESIUM	d_MAGNESIUM	MANGANESE	d_MANGANESE	MERCURY	d_MERCURY
01GW0601			156000	1	37.9	1	0.1	0
08GWT00701			6750	1	93.9	1	0.03	0
09GW1001			10600	1	164	1	0.2	0
09GWT0101			26500	1	34.8	1	0.2	0
09GWT0501			21900	1	178	1	0.2	0
09GWTP0601			19800	1	15	1	0.2	0
10GWC5201			11800	1	897	1	0.2	0
12GWT2501			229000	1	4910	1	0.042	0
12GWT2502			153000	1	2200	1	0.03	0
12GWT2601			70000	1	2520	1	0.14	0
12GWT2602			50000	1	1020	1	0.051	0
12GWT2701			16400	1	701	1	0.03	0
12GWT2702			16500	1	160	1	0.03	0
12GWT3301			33500	1	3010	1	0.043	0
12GWT3302			27200	1	1680	1	0.05	0
13GWT0101	21.1	1	6790	1	689	1	0.16	1
13GWT0102			5850	1	566	0	0.39	1
13GWT0301	74	1	17000	1	302	1	0.02	0
13GWT0302			15800	1	211	1	0.02	0
13GWT2801			2950	1	66.7	1	0.007	0
16GW0201	32.7	1	6240	1	916	1	0.02	0
16GW0202	33.6	1	6480	1	864	1	0.2	0
16GW0203			35200	1	2440	1	0.02	0
16GWT1701			16700	1	5940	1	0.007	0
18AGWT001			5510	1	1270	1	0.2	0
18DGWT001			15100	1	6.89	1	0.2	0
18GGWT004			10800	1	1180	1	0.2	0
18IGWT001			37100	1	1890	1	0.2	0
22GWT001							0.18	0

Samples	NICKEL	d_NICKEL	POTASSIUM	d_POTASSIUM	SELENIUM	d_SELENIUM	SODIUM	d_SODIUM
01GW0601	2.6	1	2790	1	0.8	0	17200	1
08GWT00701	7.8	1	518	1	0.33	1	36500	1
09GW1001	10	0	5000	0	1	0	57600	1
09GWT0101	10	0	5000	0	1	0	134000	1
09GWT0501	51.2	1	5000	0	1	0	102000	1
09GWTP0601	10	0	5000	0	1.1	1	48900	1
10GWC5201	10	0	5000	0	1	0	15700	1
12GWT2501	103	1	5320	1	3.4	1	152000	1
12GWT2502	32	1	3320	1	1.9	1	116000	1
12GWT2601	60.1	1	3740	1	0.28	0	165000	1
12GWT2602	12.8	1	1630	1	0.99	1	143000	1
12GWT2701	30.7	1	3710	1	0.61	0	53600	1
12GWT2702	7.3	1	1080	1	0.37	0	39200	1
12GWT3301	131	1	4520	1	0.094	0	40300	1
12GWT3302	110	1	4770	1	0.31	0	32200	1
13GWT0101	26.6	1	494	1	0.17	0	24300	1
13GWT0102	21.1	1	403	1	0.05	0	26100	1
13GWT0301	99.7	1	2860	1	0.32	0	37400	1
13GWT0302	76.3	1	1040	1	0.04	0	40700	1
13GWT2801	7.1	1	3670	1	4.1	1	124000	1
16GW0201	34.2	1	738	1	0.05	0	18000	1
16GW0202	27	1	3390	0	0.06	0	17900	1
16GW0203	36.7	1	2640	1	0.04	0	20200	1
16GWT1701	125	1	5380	1	0.07	0	61300	1
18AGWT001	76.1	1	2230	1	1.25	0	10100	1
18DGWT001	1.56	1	1170	1	1.25	0	34300	1
18GGWT004	88.1	1	5000	1	2.5	0	89300	1
18IGWT001	55.8	1	5370	1	2.5	0	50300	1
22GWT001					0.45	1		

Samples	STRONTIUM	d_STRONTIUM	THALLIUM	d_THALLIUM	THORIUM-CALCI_THORIUM-CAL	TITANIUM	d_TITANIUM
01GW0601	958	1	5	0	0.328864 1		
08GWT00701			0.26	0			
09GW1001			1	0			
09GWT0101			1	0			
09GWT0501			1	0			
09GWTP0601			1	0			
10GWC5201			1	0			
12GWT2501			0.08	1			
12GWT2502			0.08	0			
12GWT2601			0.043	0			
12GWT2602			0.06	0			
12GWT2701			0.043	0			
12GWT2702			0.043	0			
12GWT3301			0.043	0			
12GWT3302			0.043	0			
13GWT0101	53.3	1	0.11	0		4	1
13GWT0102			0.08	0		0.21	0
13GWT0301	97.8	1	0.23	0		32	1
13GWT0302			0.04	0		8.5	1
13GWT2801			0.06	0		99	1
16GW0201	88.4	1	0.1	0		3.8	1
16GW0202	98.4	1	0.11	0		3	1
16GW0203			0.08	0		0.17	0
16GWT1701			0.12	0		0.74	0
18AGWT001			1	0			
18DGWT001			1	0			
18GGWT004			2	0			
18IGWT001			2	0			
22GWT001							

Samples	VANADIUM	d_VANADIUM	ZINC	d_ZINC
01GW0601	3	0	1.1	0
08GWT00701	1.14	0	12.4	1
09GW1001	2	0	10	0
09GWT0101	2.1	1	10	0
09GWT0501	2	0	25.4	1
09GWTP0601	2	0	13.2	1
10GWC5201	2	0	10	0
12GWT2501	1.14	0	20.8	1
12GWT2502	1.14	0	26.1	1
12GWT2601	1.14	0	12.1	1
12GWT2602	1.14	0	8	1
12GWT2701	1.14	0	11.3	1
12GWT2702	1.14	0	3.3	0
12GWT3301	1.14	0	96	1
12GWT3302	1.14	0	128	1
13GWT0101	0.08	0	29.7	1
13GWT0102	0.06	0	29.9	1
13GWT0301	5.8	1	161	1
13GWT0302	0.76	0	97.7	1
13GWT2801	12.5	1	6.7	1
16GW0201	0.3	0	50	1
16GW0202	0.35	0	42.9	1
16GW0203	0.09	0	15.8	1
16GWT1701	0.17	0	122	1
18AGWT001	2.5	0	63.1	1
18DGWT001	2.5	0	2.16	1
18GGWT004	7.47	1	78.2	1
18IGWT001	17.9	1	85	1
22GWT001				

General Background Statistics for Data Sets with Non-Detects

User Selected Options

From File Converted_Data.wst

Full Precision OFF

Confidence Coefficient 95%

Coverage 95%

Different or Future K Values 1

Number of Bootstrap Operations 2000

ALUMINUM

General Statistics

Number of Valid Data 28

Number of Detected Data 19

Number of Distinct Detected Data 19

Number of Non-Detect Data 9

Tolerance Factor 2.246

Percent Non-Detects 32.14%

Raw Statistics Log-transformed Statistics

Minimum Detected 28.5 Minimum Detected 3.35

Maximum Detected 8500 Maximum Detected 9.048

Mean of Detected 1729 Mean of Detected 6.338

SD of Detected 2595 SD of Detected 1.586

Minimum Non-Detect 8.3 Minimum Non-Detect 2.116

Maximum Non-Detect 200 Maximum Non-Detect 5.298

Data with Multiple Detection Limits

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods),
Observations < Largest ND are treated as NDs

Single Detection Limit Scenario

Number treated as Non-Detect with Single DL 14

Number treated as Detected with Single DL 14

Single DL Non-Detect Percentage 50.00%

Background Statistics

Normal Distribution Test with Detected Values Only

Shapiro Wilk Test Statistic 0.671

Shapiro Wilk Test Statistic 0.939

5% Shapiro Wilk Critical Value 0.901

Data not Normal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Assuming Normal Distribution

DL/2 Substitution Method

Mean 1194

SD 2262

95% UTL 95% Coverage 6274

95% UPL (t) 5115

90% Percentile (z) 4093

95% Percentile (z) 4914

99% Percentile (z) 6456

Assuming Lognormal Distribution

DL/2 Substitution Method

Mean (Log Scale) 5.507

SD (Log Scale) 1.891

95% UTL 95% Coverage 17207

95% UPL (t) 6529

90% Percentile (z) 2779

95% Percentile (z) 5522

99% Percentile (z) 20029

Maximum Likelihood Estimate(MLE) Method Log ROS Method

> Mean -263.6 Mean in Original Scale 1186

SD 3578 SD in Original Scale 2266

95% UTL with 95% Coverage 7772 95% UTL with 95% Coverage 19652

95% BCA UTL with 95% Coverage 8500

95% Bootstrap (%) UTL with 95% Coverage 8500

Data Distribution Test with Detected Values Only

95% UPL (t) 5939 95% UPL (t) 6974

90% Percentile (z) 4322 90% Percentile (z) 2798 95% Percentile (z) 5622 95% Percentile (z) 5830

99% Percentile (z) 8060 99% Percentile (z) 23118

Gamma Distribution Test with Detected Values Only

k star (bias corrected) 0.505 Data appear Lognormal at 5% Significance Level

Theta Star 3421

nu star 19.21

A-D Test Statistic 1.228 Nonparametric Statistics

5% A-D Critical Value 0.797 Kaplan-Meier (KM) Method

K-S Test Statistic 0.284 Mean 1192 SD 2222

SE of Mean 431.5

95% KM UTL with 95% Coverage 6183

95% KM Chebyshev UPL 11050

95% KM UPL (t) 5044

Mean 1174 90% Percentile (z) 4040

95% Percentile (z) 4847 99% Percentile (z) 6362

Theta star 9537 Gamma ROS Limits with Extrapolated Data

Nu star 6.891 95% Wilson Hilferty (WH) Approx. Gamma UPL 5123

95% Hawkins Wixley (HW) Approx. Gamma UPL 6237 95% WH Approx. Gamma UTL with 95% Coverage 8533

95% HW Approx. Gamma UTL with 95% Coverage 11951

5% K-S Critical Value 0.209

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics with Extrapolated Data

Median 196

SD 2273

k star 0.123

95% Percentile of Chisquare (2k) 1.4

90% Percentile 3347

95% Percentile 6674

99% Percentile 16767

Note: DL/2 is not a recommended method.

ANTIMONY

General Statistics

Number of Valid Data 28

Number of Detected Data 1

Number of Distinct Detected Data 1

Number of Non-Detect Data 27

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set!

It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable ANTIMONY was not processed!

ARSENIC

General Statistics

Number of Valid Data 29

Number of Detected Data 12

Number of Distinct Detected Data 12

Number of Non-Detect Data 17

Tolerance Factor 2.232

Number of Non-Detects 58.62%

Raw Statistics

Minimum Detected 0.66 Maximum Detected 15.2 Mean of Detected 3.867 SD of Detected 4.5 Minimum Non-Detect 0.16 Maximum Non-Detect 3.2

Log-transformed Statistics

a Statistics	
Minimum Detected	-0.416
Maximum Detected	2.721
Mean of Detected	0.834
SD of Detected	1.023
Minimum Non-Detect	-1.833
Maximum Non-Detect	1.163

Data with Multiple Detection Limits

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

Single Detection Limit Scenario

Number treated as Non-Detect with Single DL 26

Number treated as Detected with Single DL 3

Single DL Non-Detect Percentage 89.66%

Background Statistics

Normal Distribution Test with Detected Values Only	Lognormal Distribution Test with Detected Values Only
Shapiro Wilk Test Statistic 0.726	Shapiro Wilk Test Statistic 0.919

5% Shapiro Wilk Critical Value 0.859

DL/2 Substitution Method

Data appear Lognormal at 5% Significance Level

Data not Normal at 5% Significance Level

Assuming Normal Distribution

Mean	1.843
SD	3.322
95% UTL 95% Coverage	9.257
95% UPL (t)	7.59
90% Percentile (z)	6.1
95% Percentile (z)	7.307
99% Percentile (z)	9.571

Assuming Lognormal Distribution

DL/2 Substitution Method					
Mean (Log Scale)	-0.389				
SD (Log Scale)	1.401				
95% UTL 95% Coverage	15.47				
95% UPL (t)	7.656				
90% Percentile (z)	4.083				
95% Percentile (z)	6.793				
99% Percentile (z)	17.65				

5% Shapiro Wilk Critical Value 0.859

Maximum Likelihood Estimate(MLE) Method

	Mean	-14.33
	SD	14.06
95% UTL with	95% Coverage	17.06

SD in Original Scale 3.367 95% UTL with 95% Coverage 13.43

Log ROS Method

Mean in Original Scale 1.718

95% BCA UTL with 95% Coverage 15.2 95% Bootstrap (%) UTL with 95% Coverage 15.2 95% UPL (t) 10 95% UPL (t) 6.472 90% Percentile (z) 3.695 90% Percentile (z) 3.37 95% Percentile (z) 8.804 95% Percentile (z) 5.717 99% Percentile (z) 18.39 99% Percentile (z) 15.4

Gamma Distribution Test with Detected Values Only

k star (bias corrected) 0.882

Theta Star 4.383

nu star 21.17

A-D Test Statistic 0.733

5% A-D Critical Value 0.754

K-S Test Statistic 0.234

5% K-S Critical Value 0.252

Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics with Extrapolated Data

Mean 1.6

Median 0.000001

SD 3.422

k star 0.112

Theta star 14.33

Nu star 6.476

95% Percentile of Chisquare (2k) 1.285

90% Percentile 4.436

95% Percentile 9.206

99% Percentile 24.04

Data Distribution Test with Detected Values Only

Data appear Gamma Distributed at 5% Significance Level

Nonparametric Statistics

Kaplan-Meier (KM) Method

Mean 2.009

SD 3.184

SE of Mean 0.618

95% KM Chebyshev UPL 16.13

95% KM UPL (t) 7.518 90% Percentile (z) 6.09

95% Percentile (z) 7.247

2070 : 0.00:..... (=) 7.1= 1.

99% Percentile (z) 9.416

Gamma ROS Limits with Extrapolated Data

95% Wilson Hilferty (WH) Approx. Gamma UPL 6.978 95% Hawkins Wixley (HW) Approx. Gamma UPL 8.027 95% WH Approx. Gamma UTL with 95% Coverage 12.1

95% HW Approx. Gamma UTL with 95% Coverage 16.43

Note: DL/2 is not a recommended method.

BARIUM

General Statistics

Number of Valid Data 29

Number of Detected Data 27

Number of Distinct Detected Data 27

Number of Non-Detect Data 2

Tolerance Factor 2.232

Percent Non-Detects 6.90%

Raw Statistics Log-transformed Statistics

Minimum Detected 13.2 Minimum Detected 2.58

Maximum Detected 97.5 Maximum Detected 4.58

Mean of Detected 43.36 Mean of Detected 3.601

SD of Detected 25.03 SD of Detected 0.601

Minimum Non-Detect 12.8 Minimum Non-Detect 2.549

Maximum Non-Detect 15.6 Maximum Non-Detect 2.747

Data with Multiple Detection Limits

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods),
Observations < Largest ND are treated as NDs

Single Detection Limit Scenario

Number treated as Non-Detect with Single DL 3

Number treated as Detected with Single DL 26

Single DL Non-Detect Percentage 10.34%

Kaplan-Meier (KM) Method

Mean 41.28

SD 24.9

SE of Mean 4.712

Background Statistics

Normal Distribution Test with Detected Values Only	Lognormal Distribution Test with Detected Values Only	
Shapiro Wilk Test Statistic 0.898	Shapiro Wilk Test Statistic 0.927	
5% Shapiro Wilk Critical Value 0.923	5% Shapiro Wilk Critical Value 0.923	
Data not Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution	Assuming Lognormal Distribution	
DL/2 Substitution Method	DL/2 Substitution Method	
Mean 40.86	Mean (Log Scale) 3.488	
SD 25.87	SD (Log Scale) 0.719	
95% UTL 95% Coverage 98.59	95% UTL 95% Coverage 162.6	
95% UPL (t) 85.61	95% UPL (t) 113.4	
90% Percentile (z) 74.01	90% Percentile (z) 82.15	
95% Percentile (z) 83.41	95% Percentile (z) 106.7	
99% Percentile (z) 101	99% Percentile (z) 174	
Maximum Likelihood Estimate(MLE) Method	Log ROS Method	
Mean 40.02	Mean in Original Scale 41.02	
SD 26.84	SD in Original Scale 25.65	
95% UTL with 95% Coverage 99.92	95% UTL with 95% Coverage 151.4	
	95% BCA UTL with 95% Coverage 97.5	
	95% Bootstrap (%) UTL with 95% Coverage 97.5	
95% UPL (t) 86.45	95% UPL (t) 107.8	
90% Percentile (z) 74.41	90% Percentile (z) 79.51	
95% Percentile (z) 84.16	95% Percentile (z) 101.7	
99% Percentile (z) 102.5	99% Percentile (z) 161.4	
Gamma Distribution Test with Detected Values Only	Data Distribution Test with Detected Values Only	
k star (bias corrected) 2.806	Data appear Lognormal at 5% Significance Level	
Theta Star 15.45		
nu star 151.5		
A-D Test Statistic 0.766	Nonparametric Statistics	
E0/ A D Odd11/-1 0.751	IZ I M / (ZNA) NA II I	

5% A-D Critical Value 0.751

5% K-S Critical Value 0.169

Data not Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.184

Assuming Gamma Distribution

Gamma ROS Statistics with Extrapolated Data

Mean 40.37 Median 35.6 SD 26.58

k star 0.463

Theta star 87.19 Nu star 26.85

95% Percentile of Chisquare (2k) 3.656

90% Percentile 110.9

95% Percentile 159.4 99% Percentile 279.3 95% KM UTL with 95% Coverage 96.86

95% KM Chebyshev UPL 151.7

95% KM UPL (t) 84.36

90% Percentile (z) 73.19 95% Percentile (z) 82.24

99% Percentile (z) 99.2

Gamma ROS Limits with Extrapolated Data

95% Wilson Hilferty (WH) Approx. Gamma UPL 127.6 95% Hawkins Wixley (HW) Approx. Gamma UPL 163.9 95% WH Approx. Gamma UTL with 95% Coverage 173.8 95% HW Approx. Gamma UTL with 95% Coverage 241.8

Note: DL/2 is not a recommended method.

BERYLLIUM

General Statistics

Number of Valid Data 28 Number of Detected Data 6 Number of Distinct Detected Data 6 Number of Non-Detect Data 22 Tolerance Factor 2.246 Percent Non-Detects 78.57%

Raw Statistics

Minimum Detected 0.1 Maximum Detected 3.01 Mean of Detected 1.394 SD of Detected 1.062 Minimum Non-Detect 0.02 Maximum Non-Detect 1.8

Log-transformed Statistics

Minimum Detected -2.303 Maximum Detected 1.102 Mean of Detected -0.0879 SD of Detected 1.221 Minimum Non-Detect -3.912 Maximum Non-Detect 0.588

Data with Multiple Detection Limits

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

Single Detection Limit Scenario

Number treated as Non-Detect with Single DL 26 Number treated as Detected with Single DL 2 Single DL Non-Detect Percentage 92.86%

Warning: There are only 6 Detected Values in this data Note: It should be noted that even though bootstrap may be performed on this data set the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Background Statistics

Normal Distribution Test with Detected Values Only

Shapiro Wilk Test Statistic 0.966

5% Shapiro Wilk Critical Value 0.788

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

DL/2 Substitution Method

Mean 0.536

SD 0.686

95% UTL 95% Coverage 2.076

95% UPL (t) 1.725

90% Percentile (z) 1.415

95% Percentile (z) 1.664

99% Percentile (z) 2.132

Maximum Likelihood Estimate(MLE) Method N/A

Gamma Distribution Test with Detected Values Only

k star (bias corrected) 0.778

Theta Star 1.792

nu star 9.333

A-D Test Statistic 0.248

5% A-D Critical Value 0.71

K-S Test Statistic 0.203 5% K-S Critical Value 0.339

Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics with Extrapolated Data

Mean 0.299

Median 0.000001

SD 0.74

k star 0.1

Theta star 2.978

Nu star 5.615

95% Percentile of Chisquare (2k) 1.164

Lognormal Distribution Test with Detected Values Only

Shapiro Wilk Test Statistic 0.884

5% Shapiro Wilk Critical Value 0.788

Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

DL/2 Substitution Method

Mean (Log Scale) -1.518

SD (Log Scale) 1.615

95% UTL 95% Coverage 8.238

95% UPL (t) 3.601

90% Percentile (z) 1.736

95% Percentile (z) 3.121

99% Percentile (z) 9.379

Log ROS Method

Mean in Original Scale 0.329

SD in Original Scale 0.728

Mean in Log Scale -2.838

SD in Log Scale 1.711

95% UTL 95% Coverage 2.734

95% UPL (t) 1.137

90% Percentile (z) 0.525

95% Percentile (z) 0.977

99% Percentile (z) 3.137

Data Distribution Test with Detected Values Only

Data appear Normal at 5% Significance Level

Nonparametric Statistics

Kaplan-Meier (KM) Method

Mean 0.398

SD 0.698

SE of Mean 0.147

95% KM UTL with 95% Coverage 1.965 95% KM Chebyshev UPL 3.493

95% KM UPL (t) 1.608

200/ D ::: () 4.00

90% Percentile (z) 1.292

95% Percentile (z) 1.546

99% Percentile (z) 2.021

Gamma ROS Limits with Extrapolated Data

95% Wilson Hilferty (WH) Approx. Gamma UPL 1.04

95% Hawkins Wixley (HW) Approx. Gamma UPL 0.925

95% WH Approx. Gamma UTL with 95% Coverage 1.93

90% Percentile 0.796 95% Percentile 1.733

99% Percentile 4.737

Note: DL/2 is not a recommended method.

95% HW Approx. Gamma UTL with 95% Coverage 2.067

CADMIUM

General Statistics

Number of Valid Data 29

Number of Detected Data 3

Number of Distinct Detected Data 3

Number of Non-Detect Data 26

Warning: Data set has only 3 Detected Values.

This is not enough to compute meaningful and reliable test statistics and estimates.

No statistics will be produced!

Tolerance Factor 2.232

Percent Non-Detects 89.66%

Raw Statistics

Minimum Detected 0.08 Maximum Detected 0.9 Mean of Detected 0.481 SD of Detected 0.41 Minimum Non-Detect 0.039 Maximum Non-Detect 1

Log-transformed Statistics

Minimum Detected -2.526 Maximum Detected -0.105 Mean of Detected -1.134 SD of Detected 1.25 Minimum Non-Detect -3.244 Maximum Non-Detect 0

Data with Multiple Detection Limits

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

Single Detection Limit Scenario

Number treated as Non-Detect with Single DL 29 Number treated as Detected with Single DL 0 Single DL Non-Detect Percentage 100.00%

Warning: There are only 3 Distinct Detected Values in this data set The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

> It is necessary to have 4 or more Distinct Values for bootstrap methods. However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Background Statistics

Normal Distribution Test with Detected Values Only

Lognormal Distribution Test with Detected Values Only

Shapiro Wilk Test Statistic 0.998

Shapiro Wilk Test Statistic 0.937

5% Shapiro Wilk Critical Value 0.767

5% Shapiro Wilk Critical Value 0.767

Data appear Normal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Assuming Normal Distribution		Assuming Lognormal Distribution
DL/2 Substitution Method		DL/2 Substitution Method
Mean ().241	Mean (Log Scale) -2.049
SD (0.233	SD (Log Scale) 1.269
95% UTL 95% Coverage ().761	95% UTL 95% Coverage 2.191
95% UPL (t) 0	0.644	95% UPL (t) 1.159
90% Percentile (z) 0).54	90% Percentile (z) 0.656
95% Percentile (z) 0	0.624	95% Percentile (z) 1.04
99% Percentile (z) 0).783	99% Percentile (z) 2.469
Maximum Likelihood Estimate(MLE) Method N	N/A	Log ROS Method
		Mean in Original Scale 0.0618
		SD in Original Scale 0.183
		Mean in Log Scale -4.645
		SD in Log Scale 1.644
		95% UTL 95% Coverage 0.377
		95% UPL (t) 0.165
		90% Percentile (z) 0.079
		95% Percentile (z) 0.144
		99% Percentile (z) 0.44
Gamma Distribution Test with Detected Values Only	,	Data Distribution Test with Detected Values Only
k star (bias corrected)	N/A	Data appear Normal at 5% Significance Level
Theta Star	N/A	
nu star	N/A	
A-D Test Statistic	N/A	Nonparametric Statistics
5% A-D Critical Value	N/A	Kaplan-Meier (KM) Method
K-S Test Statistic	N/A	Mean 0.138
5% K-S Critical Value	N/A	SD 0.187
Data not Gamma Distributed at 5% Significance Leve	el	SE of Mean 0.0497
		95% KM UTL with 95% Coverage 0.555
Assuming Gamma Distribution		95% KM Chebyshev UPL 0.967
Gamma ROS Statistics with Extrapolated Data		95% KM UPL (t) 0.461
Mean	N/A	90% Percentile (z) 0.377
Median	N/A	95% Percentile (z) 0.445
SD	N/A	99% Percentile (z) 0.573
k star	N/A	
Theta star	N/A	Gamma ROS Limits with Extrapolated Data
Nu star	N/A	95% Wilson Hilferty (WH) Approx. Gamma UPL N/A
95% Percentile of Chisquare (2k)	N/A	95% Hawkins Wixley (HW) Approx. Gamma UPL N/A
		95% WH Approx. Gamma UTL with 95% Coverage N/A
90% Percentile	N/A	95% HW Approx. Gamma UTL with 95% Coverage N/A
95% Percentile	N/A	
99% Percentile	N/A	

Note: DL/2 is not a recommended method.

CALCIUM

General Statistics

Total Number of Observations 28

Number of Distinct Observations 28

Tolerance Factor 2.246

Raw Statistics Log-Transformed Statistics

Minimum 7190 Minimum 8.88 Maximum 216000 Maximum 12.28 Second Largest 212000 Second Largest 12.26 First Quartile 20150 First Quartile 9.907 Median 40800 Median 10.62 Third Quartile 81575 Third Quartile 11.31 Mean 60441 Mean 10.58 Geometric Mean 39282 SD 0.97

SD 58521

Coefficient of Variation 0.968

Skewness 1.569

Background Statistics

Normal Distribution Test Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.799

Shapiro Wilk Critical Value 0.924

Shapiro Wilk Critical Value 0.924

Data not Normal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% UTL with 95% Coverage 346839

95% UPL (t) 210986

90% Percentile (z) 136124

95% Percentile (z) 193618

99% Percentile (z) 374946

Assuming Normal Distribution

95% UTL with $\,\,95\%$ Coverage $\,191879$

95% UPL (t) 161883 90% Percentile (z) 135439

95% Percentile (z) 156699 99% Percentile (z) 196581

Gamma Distribution Test

Data Distribution Test

k star 1.186 Data appear Gamma Distributed at 5% Significance Level

Theta Star 50958

MLE of Mean 60441

MLE of Standard Deviation 55497

nu star 66.42

A-D Test Statistic 0.425 Nonparametric Statistics

5% A-D Critical Value 0.767 90% Percentile 138500 K-S Test Statistic 0.131 95% Percentile 197300

5% K-S Critical Value 0.16	59
----------------------------	----

Data appear Gamma Distributed at 5% Significance Level

99% Percentile 214920

Assuming Gamma Distribution

90% Percentile 133427 95% Percentile 170560

99% Percentile 255738

95% WH Approx. Gamma UPL 174449 95% HW Approx. Gamma UPL 179903 95% WH Approx. Gamma UTL with 95% Coverage 236352

95% HW Approx. Gamma UTL with 95% Coverage 251864

95% UTL with 95% Coverage 216000

95% Percentile Bootstrap UTL with 95% Coverage 216000 95% BCA Bootstrap UTL with 95% Coverage 216000

95% UPL 214200

95% Chebyshev UPL 320043

Upper Threshold Limit Based upon IQR 173713

CHROMIUM

General Statistics

Number of Valid Data 29 Number of Distinct Detected Data 9 Tolerance Factor 2.232

Number of Detected Data 9 Number of Non-Detect Data 20 Percent Non-Detects 68.97%

Raw Statistics

Minimum Detected 0.58
Maximum Detected 26.2
Mean of Detected 7.188
SD of Detected 8.366
Minimum Non-Detect 0.17
Maximum Non-Detect 5

Log-transformed Statistics

od Otaliotics	
Minimum Detected	-0.545
Maximum Detected	3.266
Mean of Detected	1.274
SD of Detected	1.343
Minimum Non-Detect	-1.772
Maximum Non-Detect	1.609

Data with Multiple Detection Limits

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

Single Detection Limit Scenario

Number treated as Non-Detect with Single DL 25 Number treated as Detected with Single DL 4 Single DL Non-Detect Percentage 86.21%

Warning: There are only 9 Detected Values in this data Note: It should be noted that even though bootstrap may be performed on this data set the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Background Statistics

Normal Distribution Test with Detected Values Only

Lognormal Distribution Test with Detected Values Only

Shapiro Wilk Test Statistic 0.798 5% Shapiro Wilk Critical Value 0.829

Shapiro Wilk Test Statistic 0.942 5% Shapiro Wilk Critical Value 0.829

Data not Normal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Assuming Normal Distribution	Assuming Lognormal Distribution
DL/2 Substitution Method	DL/2 Substitution Method
Mean 2.834	Mean (Log Scale) -0.101
SD 5.43	SD (Log Scale) 1.493
95% UTL 95% Coverage 14.95	95% UTL 95% Coverage 25.33
95% UPL (t) 12.23	95% UPL (t) 11.97
90% Percentile (z) 9.793	90% Percentile (z) 6.126
95% Percentile (z) 11.77	95% Percentile (z) 10.54
99% Percentile (z) 15.47	99% Percentile (z) 29.16
Maximum Likelihood Estimate(MLE) Method	Log ROS Method
Mean 16.23	Mean in Original Scale 2.335
SD 7.219	SD in Original Scale 5.569
95% UTL with 95% Coverage 32.34	95% UTL with 95% Coverage 24.86

	95% Bootstrap (%) UTL with 95% Coverage 26.2
95% UPL (t) 28.72	95% UPL (t) 9.108
90% Percentile (z) 25.48	90% Percentile (z) 3.712
95% Percentile (z) 28.1	95% Percentile (z) 7.678
99% Percentile (z) 33.02	99% Percentile (z) 30.02

Gamma Distribution Test with Detected Values Only

k star (bias corrected) 0.637 Data appear Gamma Distributed at 5% Significance Level
Theta Star 11.29

	nu star 11.47
Nonparametric Statistics	A-D Test Statistic 0.321

K-S Test Statistic 0.196
5% K-S Critical Value 0.288

Data appear Gamma Distributed at 5% Significance Level

5% A-D Critical Value 0.748

Assuming Gamma Distribution

Gamma ROS Statistics with Extrapolated Data

ted Data

Mean 2.253

Median 0.000001

SD 5.601

k star 0.101

Theta star 22.29 Nu star 5.862 95% Percentile of Chisquare (2k) 1.173

90% Percentile 6.02295% Percentile 13.07

SD 5.344 SE of Mean 1.055 95% KM UTL with 95% Coverage 14.61 95% KM Chebyshev UPL 26.38

Kaplan-Meier (KM) Method

95% BCA UTL with 95% Coverage 26.2

95% KM UPL (t) 11.93 90% Percentile (z) 9.531 95% Percentile (z) 11.47 99% Percentile (z) 15.11

Mean 2.683

Gamma ROS Limits with Extrapolated Data

Data Distribution Test with Detected Values Only

95% Wilson Hilferty (WH) Approx. Gamma UPL 8.743 95% Hawkins Wixley (HW) Approx. Gamma UPL 9.012 95% WH Approx. Gamma UTL with 95% Coverage 15.57 95% HW Approx. Gamma UTL with 95% Coverage 19.08

99% Percentile 35.6

Note: DL/2 is not a recommended method.

COBALT

General Statistics

Number of Valid Data 28

Number of Detected Data 21

Number of Distinct Detected Data 20

Number of Non-Detect Data 7

Tolerance Factor 2.246

Percent Non-Detects 25.00%

Raw Statistics

Minimum Detected 2 Minimum Detected 0.693

Maximum Detected 64.4 Maximum Detected 4.165

Mean of Detected 28.2 Mean of Detected 3.037

SD of Detected 18.78 SD of Detected 0.912

Minimum Non-Detect 1 Minimum Non-Detect 0

Maximum Non-Detect 3 Maximum Non-Detect 1.099

Data with Multiple Detection Limits

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

Single Detection Limit Scenario

Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

Log-transformed Statistics

Number treated as Non-Detect with Single DL 8

Number treated as Detected with Single DL 20

Single DL Non-Detect Percentage 28.57%

Background Statistics

Normal Distribution Test with Detected Values Only	Lognormal Distribution	Test with Detected Values Only
--	------------------------	--------------------------------

Shapiro Wilk Test Statistic 0.95

Shapiro Wilk Critical Value 0.908

Shapiro Wilk Critical Value 0.908

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

DL/2 Substitution Method	DL/2 Substitution Method
Mean 21.45	Mean (Log Scale) 2.3
SD 20.08	SD (Log Scale) 1.534
95% UTL 95% Coverage 66.54	95% UTL 95% Coverage 313.2
95% UPL (t) 56.25	95% UPL (t) 142.6
90% Percentile (z) 47.18	90% Percentile (z) 71.3
95% Percentile (z) 54.47	95% Percentile (z) 124.5
99% Percentile (z) 68.15	99% Percentile (z) 354.3

Maximum Likelihood Estimate(MLE) Method	Log ROS Method
---	----------------

Mean 17.45 Mean in Original Scale 21.93
SD 25.22 SD in Original Scale 19.59
95% UTL with 95% Coverage 74.1 95% UTL with 95% Coverage 178.8
95% BCA UTL with 95% Coverage 64.4

95% Bootstrap (%) UTL with 95% Coverage 64.4 95% UPL (t) 61.18 95% UPL (t) 98 90% Percentile (z) 49.78 90% Percentile (z) 57.67 95% Percentile (z) 58.94 95% Percentile (z) 88.33 99% Percentile (z) 76.13 99% Percentile (z) 196.5 Gamma Distribution Test with Detected Values Only **Data Distribution Test with Detected Values Only** k star (bias corrected) 1.576 Data appear Normal at 5% Significance Level Theta Star 17.89 nu star 66.19 A-D Test Statistic 0.259 Nonparametric Statistics 5% A-D Critical Value 0.756 Kaplan-Meier (KM) Method K-S Test Statistic 0.109 Mean 21.65 5% K-S Critical Value 0.192 SD 19.51 Data appear Gamma Distributed at 5% Significance Level SE of Mean 3.778 95% KM UTL with 95% Coverage 65.47 **Assuming Gamma Distribution** 95% KM Chebyshev UPL 108.2 Gamma ROS Statistics with Extrapolated Data 95% KM UPL (t) 55.47 Mean 21.15 90% Percentile (z) 46.65 Median 15.55 95% Percentile (z) 53.74 SD 20.39 99% Percentile (z) 67.03 k star 0.182

Note: DL/2 is not a recommended method.

COPPER

General Statistics

Theta star 116.1

90% Percentile 63.82

95% Percentile 111.6 99% Percentile 245.1

95% Percentile of Chisquare (2k) 1.922

Nu star 10.2

Number of Valid Data 28

Number of Detected Data 17

Number of Distinct Detected Data 16

Number of Non-Detect Data 11

Tolerance Factor 2.246

Percent Non-Detects 39.29%

Raw Statistics Log-transformed Statistics

Minimum Detected 0.67 Minimum Detected -0.4

Maximum Detected 21.6 Maximum Detected 3.073

Mean of Detected 5.064 Mean of Detected 1.096

SD of Detected 6.002 SD of Detected 1.039

Gamma ROS Limits with Extrapolated Data

95% Wilson Hilferty (WH) Approx. Gamma UPL 98.38

95% Hawkins Wixley (HW) Approx. Gamma UPL 138.2 95% WH Approx. Gamma UTL with 95% Coverage 152.7

95% HW Approx. Gamma UTL with 95% Coverage 244.7

Minimum Non-Detect 0.12 Maximum Non-Detect 2.1 Minimum Non-Detect -2.12 Maximum Non-Detect 0.742

SE of Mean 0.976

95% KM UTL with 95% Coverage 14.61

Data with Multiple Detection Limits

Data not Gamma Distributed at 5% Significance Level

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods),
Observations < Largest ND are treated as NDs

Single Detection Limit Scenario

Number treated as Non-Detect with Single DL 17

Number treated as Detected with Single DL 11

Single DL Non-Detect Percentage 60.71%

Background Statistics

Background	Statistics
Normal Distribution Test with Detected Values Only	Lognormal Distribution Test with Detected Values Only
Shapiro Wilk Test Statistic 0.698 Shapiro Wilk Test S	
5% Shapiro Wilk Critical Value 0.892	5% Shapiro Wilk Critical Value 0.892
Data not Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level
Assuming Normal Distribution	Assuming Lognormal Distribution
DL/2 Substitution Method	DL/2 Substitution Method
Mean 3.336	Mean (Log Scale) 0.375
SD 5.117	SD (Log Scale) 1.373
95% UTL 95% Coverage 14.83	95% UTL 95% Coverage 31.77
95% UPL (t) 12.21	95% UPL (t) 15.72
90% Percentile (z) 9.894	90% Percentile (z) 8.451
95% Percentile (z) 11.75	95% Percentile (z) 13.92
99% Percentile (z) 15.24	99% Percentile (z) 35.48
Maximum Likelihood Estimate(MLE) Method	Log ROS Method
Mean -1.041	Mean in Original Scale 3.25
SD 9.016	SD in Original Scale 5.161
95% UTL with 95% Coverage 19.21	95% UTL with 95% Coverage 27.39
	95% BCA UTL with 95% Coverage 21.6
	95% Bootstrap (%) UTL with 95% Coverage 21.6
95% UPL (t) 14.59	95% UPL (t) 13.75
90% Percentile (z) 10.51	90% Percentile (z) 7.487
95% Percentile (z) 13.79	95% Percentile (z) 12.2
99% Percentile (z) 19.93	99% Percentile (z) 30.51
Gamma Distribution Test with Detected Values Only	Data Distribution Test with Detected Values Only
k star (bias corrected) 0.934	Data appear Lognormal at 5% Significance Level
Theta Star 5.42	
nu star 31.76	
A-D Test Statistic 0.796	Nonparametric Statistics
5% A-D Critical Value 0.764	Kaplan-Meier (KM) Method
K-S Test Statistic 0.218	Mean 3.36
5% K-S Critical Value 0.215	SD 5.008

Assuming Gamma Distribution

Gamma ROS Statistics with Extrapolated Data

Mean 3.074 Median 0.855 SD 5.262

k star 0.142

Theta star 21.58 Nu star 7.977

95% Percentile of Chisquare (2k) 1.583

90% Percentile 9.045

95% Percentile 17.09 99% Percentile 40.67

95% KM Chebyshev UPL 25.58

95% KM UPL (t) 12.04 90% Percentile (z) 9.778 95% Percentile (z) 11.6

99% Percentile (z) 15.01

Gamma ROS Limits with Extrapolated Data

95% Wilson Hilferty (WH) Approx. Gamma UPL 14.48 95% Hawkins Wixley (HW) Approx. Gamma UPL 18.8 95% WH Approx. Gamma UTL with 95% Coverage 23.95 95% HW Approx. Gamma UTL with 95% Coverage 36.05

Note: DL/2 is not a recommended method.

IRON

General Statistics

Number of Valid Data 28

Number of Detected Data 25

Number of Distinct Detected Data 25

Number of Non-Detect Data 3

Tolerance Factor 2.246

Percent Non-Detects 10.71%

Raw Statistics

Minimum Detected 12.7

Maximum Detected 41800

Mean of Detected 7912

SD of Detected 12906

Minimum Non-Detect 61.7

Maximum Non-Detect 344

Log-transformed Statistics

Minimum Detected 2.542
Maximum Detected 10.64
Mean of Detected 7.288
SD of Detected 2.142
Minimum Non-Detect 4.122
Maximum Non-Detect 5.841

Data with Multiple Detection Limits

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods),
Observations < Largest ND are treated as NDs

Single Detection Limit Scenario

Number treated as Non-Detect with Single DL 9

Number treated as Detected with Single DL 19

Single DL Non-Detect Percentage 32.14%

Background Statistics

Normal Distribution Test with Detected Values Only

Shapiro Wilk Test Statistic 0.652 5% Shapiro Wilk Critical Value 0.918

Data not Normal at 5% Significance Level

Lognormal Distribution Test with Detected Values Only

Shapiro Wilk Test Statistic 0.95 5% Shapiro Wilk Critical Value 0.918

Data appear Lognormal at 5% Significance Level

Assuming Normal Distribution

DL/2 Substitution Method

Mean 7074

Assuming Lognormal Distribution

DL/2 Substitution Method

Mean (Log Scale) 6.953

SD 12415 SD (Log Scale) 2.259 95% UTL 95% Coverage 34957 95% UTL 95% Coverage 167271 95% UPL (t) 28594 95% UPL (t) 52538 90% Percentile (z) 22984 90% Percentile (z) 18926 95% Percentile (z) 27494 95% Percentile (z) 43008 99% Percentile (z) 35955 99% Percentile (z) 200568 Maximum Likelihood Estimate(MLE) Method Log ROS Method Mean 3382 Mean in Original Scale 7069 SD 15978 SD in Original Scale 12418 95% UTL with 95% Coverage 39268 95% UTL with 95% Coverage 197181 95% BCA UTL with 95% Coverage 41800 95% Bootstrap (%) UTL with 95% Coverage 41800 95% UPL (t) 31079 95% UPL (t) 58587 90% Percentile (z) 23858 90% Percentile (z) 20097 95% Percentile (z) 29663 95% Percentile (z) 47502 99% Percentile (z) 40552 99% Percentile (z) 238499

Gamma Distribution Test with Detected Values Only

k star (bias corrected) 0.371 Theta Star 21336

nu star 18.54

A-D Test Statistic 1.122 5% A-D Critical Value 0.831 K-S Test Statistic 0.208

5% K-S Critical Value 0.187

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics with Extrapolated Data

Mean 7064 Median 895.5 SD 12420 k star 0.196

Theta star 36034 Nu star 10.98

95% Percentile of Chisquare (2k) 2.031

99% Percentile 78646

90% Percentile 21362 95% Percentile 36589

Note: DL/2 is not a recommended method.

Data Distribution Test with Detected Values Only

Data appear Lognormal at 5% Significance Level

Nonparametric Statistics

Kaplan-Meier (KM) Method

Mean 7069 SD 12194

SE of Mean 2352

95% KM Chebyshev UPL 61161

95% KM UPL (t) 28206

90% Percentile (z) 22696

95% Percentile (z) 27126

99% Percentile (z) 35436

Gamma ROS Limits with Extrapolated Data

95% Wilson Hilferty (WH) Approx. Gamma UPL 29620 95% Hawkins Wixley (HW) Approx. Gamma UPL 33579 95% WH Approx. Gamma UTL with 95% Coverage 47829 95% HW Approx. Gamma UTL with 95% Coverage 60315

LEAD

General Statistics

Number of Valid Data 29

Number of Detected Data 4

Number of Distinct Detected Data 4

Number of Non-Detect Data 25

Tolerance Factor 2.232

Percent Non-Detects 86.21%

Raw Statistics Log-transformed Statistics

Minimum Detected 0.54 Minimum Detected -0.616

Maximum Detected 15.5 Maximum Detected 2.741

Mean of Detected 7.735 Mean of Detected 1.437

SD of Detected 7.032 SD of Detected 1.531

Minimum Non-Detect 0.157 Minimum Non-Detect -1.852

Maximum Non-Detect 2.5 Maximum Non-Detect 0.916

Data with Multiple Detection Limits

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

Single Detection Limit Scenario

Number treated as Non-Detect with Single DL 26

Number treated as Detected with Single DL 3

Single DL Non-Detect Percentage 89.66%

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set
the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Background Statistics

Normal Distribution Test with Detected Values Only	ed Values Only Lognormal Distribution Test with Detected Values Only	
Shapiro Wilk Test Statistic 0.924	Shapiro Wilk Test Statistic 0.906	
5% Shapiro Wilk Critical Value 0.748	5% Shapiro Wilk Critical Value 0.748	

Data appear Normal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Assuming Normal Distribution	Assuming Lognormal Distribution
DL/2 Substitution Method	DL/2 Substitution Method
Mean 1.423	Mean (Log Scale) -0.78
SD 3.46	SD (Log Scale) 1.249
95% UTL 95% Coverage 9.147	95% UTL 95% Coverage 7.436
95% UPL (t) 7.41	95% UPL (t) 3.974
90% Percentile (z) 5.858	90% Percentile (z) 2.27
95% Percentile (z) 7.115	95% Percentile (z) 3.573
99% Percentile (z) 9.473	99% Percentile (z) 8.366
ximum Likelihood Estimate(MLE) Method	Log ROS Method

Maximum Likelihood Estimate(MLE) Method

Mean -16.52

SD 15.16

Log ROS Method

Mean in Original Scale 1.079

SD in Original Scale 3.555

95% UTL with 95% Coverage 17.32 95% UTL with 95% Coverage 5.368 95% BCA UTL with 95% Coverage 15.5 95% Bootstrap (%) UTL with 95% Coverage 15.5 95% UPL (t) 9.711 95% UPL (t) 1.384 90% Percentile (z) 2.908 90% Percentile (z) 0.412 95% Percentile (z) 8.417 95% Percentile (z) 1.099 99% Percentile (z) 18.75 99% Percentile (z) 6.926

Gamma Distribution Test with Detected Values Only **Data Distribution Test with Detected Values Only**

> k star (bias corrected) 0.405 Data appear Normal at 5% Significance Level Theta Star 19.1

nu star 3.24

A-D Test Statistic 0.31 **Nonparametric Statistics** 5% A-D Critical Value 0.667 Kaplan-Meier (KM) Method

K-S Test Statistic 0.279 Mean 1.532 SD 3.357 5% K-S Critical Value 0.403

Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics with Extrapolated Data

95% KM UPL (t) 7.341 Mean 1.067 90% Percentile (z) 5.835 Median 0.000001 95% Percentile (z) 7.055 99% Percentile (z) 9.343

Gamma ROS Limits with Extrapolated Data

95% Wilson Hilferty (WH) Approx. Gamma UPL 2.754

SE of Mean 0.72

95% KM UTL with 95% Coverage 9.026

95% KM Chebyshev UPL 16.42

SD 3.559 k star 0.0873 Theta star 12.22

Nu star 5.062

95% Percentile of Chisquare (2k) 1.017

95% Hawkins Wixley (HW) Approx. Gamma UPL 1.921 95% WH Approx. Gamma UTL with 95% Coverage 5.225 95% HW Approx. Gamma UTL with 95% Coverage 4.427 90% Percentile 2.662

95% Percentile 6.217 99% Percentile 18.12

Note: DL/2 is not a recommended method.

MAGNESIUM

General Statistics

Total Number of Observations 28 Number of Distinct Observations 28 Tolerance Factor 2.246

Raw Statistics Log-Transformed Statistics

> Minimum 2950 Minimum 7.99 Maximum 229000 Maximum 12.34 Second Largest 156000 Second Largest 11.96

First Quartile 9648	First Quartile 9.157
Median 16600	Median 9.717
Third Quartile 33925	Third Quartile 10.43
Mean 36803	Mean 9.873
Geometric Mean 19398	SD 1.071
SD 53719	
Coefficient of Variation 1.46	
Skewness 2.593	
Backaro	ound Statistics
Normal Distribution Test	Lognormal Distribution Test
Shapiro Wilk Test Statistic 0.601	Shapiro Wilk Test Statistic 0.948
Shapiro Wilk Critical Value 0.924	Shapiro Wilk Critical Value 0.924
Data not Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level

Assuming Normal Distribution	Assuming Lognormal Distribution	
95% UTL with 95% Coverage 157455	95% UTL with 95% Coverage 215057	
95% UPL (t) 129921	95% UPL (t) 124200	
90% Percentile (z) 105646	90% Percentile (z) 76544	
95% Percentile (z) 125162	95% Percentile (z) 112957	
99% Percentile (z) 161771	99% Percentile (z) 234384	

Data Distribution Test
Data appear Lognormal at 5% Significance Level

A-D Test Statistic 1.565	Nonparametric Statistics
5% A-D Critical Value 0.778	90% Percentile 94900
K-S Test Statistic 0.183	95% Percentile 154950
5% K-S Critical Value 0.171	99% Percentile 209290

D

5% K-S Critical Value 0.171	99% Percentile 209290
Data not Gamma Distributed at 5% Significance Level	
Assuming Gamma Distribution	95% UTL with 95% Coverage 229000
90% Percentile 88498	95% Percentile Bootstrap UTL with 95% Coverage 229000
95% Percentile 117432	95% BCA Bootstrap UTL with 95% Coverage 203450
99% Percentile 185514	95% UPL 196150
	95% Chebyshev UPL 275102
95% WH Approx. Gamma UPL 115881	Upper Threshold Limit Based upon IQR 70341
95% HW Approx. Gamma UPL 116015	
95% WH Approx. Gamma UTL with 95% Coverage 163521	
95% HW Approx. Gamma UTL with 95% Coverage 169605	

MANGANESE

General Statistics

Number of Valid Data 28

Number of Detected Data 27

Number of Distinct Detected Data 27

Number of Non-Detect Data 1

Tolerance Factor 2.246

Percent Non-Detects 3.57%

Raw Statistics Log-transformed Statistics

Minimum Detected 6.89 Minimum Detected 1.93

Maximum Detected 5940 Maximum Detected 8.689

Mean of Detected 1237 Mean of Detected 6.115

SD of Detected 1498 SD of Detected 1.798

Minimum Non-Detect 566 Minimum Non-Detect 6.339

Maximum Non-Detect 566 Maximum Non-Detect 6.339

Background Statistics

Normal Distribution Test with Detected Values Only

Lognormal Distribution Test with Detected Values Only

Shapiro Wilk Test Statistic 0.781 Shapiro Wilk Test Statistic 0.937

5% Shapiro Wilk Critical Value 0.923

5% Shapiro Wilk Critical Value 0.923

Data not Normal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Assuming Normal Distribution Assuming Lognormal Distribution

DL/2 Substitution Method

 Mean 1203
 Mean (Log Scale) 6.098

 SD 1481
 SD (Log Scale) 1.767

 95% UTL 95% Coverage 4528
 95% UTL 95% Coverage 23532

 95% UPL (t) 3770
 95% UPL (t) 9514

 90% Percentile (z) 3100
 90% Percentile (z) 4282

 95% Percentile (z) 3638
 95% Percentile (z) 8136

 99% Percentile (z) 4647
 99% Percentile (z) 27121

Maximum Likelihood Estimate(MLE) Method Log ROS Method

Mean 728.7Mean in Original Scale 1196SD 2006SD in Original Scale 1485

95% UTL with 95% Coverage 5235 95% UTL with 95% Coverage 23792 95% BCA UTL with 95% Coverage 5940

95% Bootstrap (%) UTL with 95% Coverage 5940

DL/2 Substitution Method

95% UPL (t) 4206 95% UPL (t) 9510 90% Percentile (z) 3300 90% Percentile (z) 4237 95% Percentile (z) 4029 95% Percentile (z) 8116 99% Percentile (z) 5396 99% Percentile (z) 27470

Gamma Distribution Test with Detected Values Only

Data Distribution Test with Detected Values Only

k star (bias corrected) 0.569 Data appear Gamma Distributed at 5% Significance Level

Theta Star 2173 nu star 30.73

A-D Test Statistic 0.249

5% A-D Critical Value 0.797

K-S Test Statistic 0.103

5% K-S Critical Value 0.177

Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics with Extrapolated Data

Mean 1193 Median 782.5

SD 1488

k star 0.374

Theta star 3186 Nu star 20.96

95% Percentile of Chisquare (2k) 3.182

90% Percentile 3408

95% Percentile 5070

99% Percentile 9280

Nonparametric Statistics

Kaplan-Meier (KM) Method

Mean 1197

SD 1458

SE of Mean 280.8

95% KM UTL with 95% Coverage 4472

95% KM Chebyshev UPL 7666

95% KM UPL (t) 3725

90% Percentile (z) 3066

95% Percentile (z) 3595

99% Percentile (z) 4589

Gamma ROS Limits with Extrapolated Data

95% Wilson Hilferty (WH) Approx. Gamma UPL 4664

95% Hawkins Wixley (HW) Approx. Gamma UPL 5410

95% WH Approx. Gamma UTL with 95% Coverage 6974 95% HW Approx. Gamma UTL with 95% Coverage 8768

Note: DL/2 is not a recommended method.

MERCURY

General Statistics

Number of Valid Data 29 Number of Distinct Detected Data 2

Number of Detected Data 2 Number of Non-Detect Data 27

Warning: Data set has only 2 Detected Values.

This is not enough to compute meaningful and reliable test statistics and estimates.

No statistics will be produced!

Tolerance Factor 2.232

Minimum Detected 0.16

Mean of Detected 0.275

Minimum Non-Detect 0.007

Maximum Non-Detect 0.2

SD of Detected 0.163

Percent Non-Detects 93.10%

Minimum Detected -1.833

Raw Statistics

Log-transformed Statistics

Maximum Detected 0.39 Maximum Detected -0.942

Mean of Detected -1.387

SD of Detected 0.63 Minimum Non-Detect -4.962

Maximum Non-Detect -1.609

Data with Multiple Detection Limits

Single Detection Limit Scenario

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs Number treated as Non-Detect with Single DL 28

Number treated as Detected with Single DL 1

Single DL Non-Detect Percentage 96.55%

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods. However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Background Statistics

Normal Distribution Test with Detected Values Only	Lognormal Distribution Test with Detected Values Only
Shapiro Wilk Test Statistic N/A	Shapiro Wilk Test Statistic N/A
5% Shapiro Wilk Critical Value N/A	5% Shapiro Wilk Critical Value N/A
Data not Normal at 5% Significance Level	Data not Lognormal at 5% Significance Level
Assuming Normal Distribution	Assuming Lognormal Distribution
DL/2 Substitution Method	DL/2 Substitution Method
Mean 0.0676	Mean (Log Scale) -3.291
SD 0.0766	SD (Log Scale) 1.21
95% UTL 95% Coverage 0.239	95% UTL 95% Coverage 0.554
95% UPL (t) 0.2	95% UPL (t) 0.302
90% Percentile (z) 0.166	90% Percentile (z) 0.175
95% Percentile (z) 0.194	95% Percentile (z) 0.272
99% Percentile (z) 0.246	99% Percentile (z) 0.621
Maximum Likelihood Estimate(MLE) Method N/A	Log ROS Method
	Mean in Original Scale N/A
	SD in Original Scale N/A
	Mean in Log Scale N/A
	SD in Log Scale N/A
	95% UTL 95% Coverage N/A
	95% UPL (t) N/A
	90% Percentile (z) N/A
	95% Percentile (z) N/A
	99% Percentile (z) N/A
Gamma Distribution Test with Detected Values Only	Data Distribution Test with Detected Values Only

k star (bias corrected) N/A Data do not follow a Discernable Distribution (0.05)

Theta Star N/A

nu star N/A

A-D Test Statistic N/A Nonparametric Statistics

5% A-D Critical Value N/A Kaplan-Meier (KM) Method

K-S Test Statistic N/A Mean 0.168
5% K-S Critical Value N/A SD 0.042

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics with Extrapolated Data

95% Percentile of Chisquare (2k)

SE of Mean 0.011

95% KM UTL with 95% Coverage 0.262

95% KM Chebyshev UPL 0.354

95% KM UPL (t) 0.241

90% Percentile (z) 0.222

95% Percentile (z) 0.237

99% Percentile (z) 0.266

k star N/A

SD

N/A

N/A

N/A

N/A

N/A

N/A

Mean

Median

Nu star

Theta star N/A Gamma ROS Limits with Extrapolated Data

95% Wilson Hilferty (WH) Approx. Gamma UPL N/A

95% Hawkins Wixley (HW) Approx. Gamma UPL N/A 95% WH Approx. Gamma UTL with 95% Coverage N/A

95% HW Approx. Gamma UTL with 95% Coverage N/A

95% Percentile N/A 99% Percentile N/A

90% Percentile

Note: DL/2 is not a recommended method.

NICKEL

General Statistics

Number of Valid Data 28

Number of Detected Data 24

Number of Distinct Detected Data 24

Number of Non-Detect Data 4

Tolerance Factor 2.246

Percent Non-Detects 14.29%

Raw Statistics Log-transformed Statistics

Minimum Detected 1.56 Minimum Detected 0.445

Maximum Detected 131 Maximum Detected 4.875

Mean of Detected 50.99 Mean of Detected 3.435

SD of Detected 40.89 SD of Detected 1.224

Minimum Non-Detect 10 Minimum Non-Detect 2.303

Maximum Non-Detect 10 Maximum Non-Detect 2.303

Background Statistics

Normal Distribution Test with Detected Values Only

Lognormal Distribution Test with Detected Values Only

Shapiro Wilk Test Statistic 0.911 Shapiro Wilk Test Statistic 0.906

5% Shapiro Wilk Critical Value 0.916

5% Shapiro Wilk Critical Value 0.916

570 Onapiro Wilk Ontical Value 0.510	370 Orlapilo Wilk Orlical Value 0.310	
Data not Normal at 5% Significance Level	Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution	Assuming Lognormal Distribution	
DL/2 Substitution Method	DL/2 Substitution Method	
Mean 44.42	Mean (Log Scale) 3.174	
SD 41.15	SD (Log Scale) 1.303	
95% UTL 95% Coverage 136.8	95% UTL 95% Coverage 446.5	
95% UPL (t) 115.7	95% UPL (t) 228.9	
90% Percentile (z) 97.15	90% Percentile (z) 127	
95% Percentile (z) 112.1	95% Percentile (z) 204	
99% Percentile (z) 140.1	99% Percentile (z) 495.8	
Maximum Likelihood Estimate(MLE) Method	Log ROS Method	
Mean 34.89	Mean in Original Scale 44.62	
SD 53.09	SD in Original Scale 40.96	
95% UTL with 95% Coverage 154.1	95% UTL with 95% Coverage 441.1	
	95% BCA UTL with 95% Coverage 131	
	95% Bootstrap (%) UTL with 95% Coverage 131	
95% UPL (t) 126.9	95% UPL (t) 227.9	
90% Percentile (z) 102.9	90% Percentile (z) 127.	
95% Percentile (z) 122.2	95% Percentile (z) 203.4	
99% Percentile (z) 158.4	99% Percentile (z) 489.2	
Gamma Distribution Test with Detected Values Only	Data Distribution Test with Detected Values Only	
k star (bias corrected) 1.03	Data appear Gamma Distributed at 5% Significance Level	
Theta Star 49.53		
nu star 49.42		
A-D Test Statistic 0.356	Nonparametric Statistics	
5% A-D Critical Value 0.769	Kaplan-Meier (KM) Method	
K-S Test Statistic 0.111	Mean 44.46	
5% K-S Critical Value 0.182	SD 40.38	
Data appear Gamma Distributed at 5% Significance Level	SE of Mean 7.799	
	95% KM UTL with 95% Coverage 135.2	
Assuming Gamma Distribution	95% KM Chebyshev UPL 223.6	
Gamma ROS Statistics with Extrapolated Data	95% KM UPL (t) 114.5	
Mean 43.99	90% Percentile (z) 96.21	
Median 31.35	95% Percentile (z) 110.9	
SD 41.61	99% Percentile (z) 138.4	
k star 0.297		
Theta star 148.1	Gamma ROS Limits with Extrapolated Data	
Nu star 16.64	95% Wilson Hilferty (WH) Approx. Gamma UPL 174.8	
95% Percentile of Chisquare (2k) 2.727	95% Hawkins Wixley (HW) Approx. Gamma UPL 224.7	
	95% WH Approx. Gamma UTL with 95% Coverage 258.3	
90% Percentile 129.9	95% HW Approx. Gamma UTL with 95% Coverage 366.3	

95% Percentile 201.9 99% Percentile 389.1

Note: DL/2 is not a recommended method.

POTASSIUM

General Statistics

Number of Valid Data 28

Number of Detected Data 22

Number of Distinct Detected Data 22

Number of Non-Detect Data 6

Tolerance Factor 2.246

Percent Non-Detects 21.43%

Raw Statistics Log-transformed Statistics

Minimum Detected 403 Minimum Detected 5.999

Maximum Detected 5380 Maximum Detected 8.59

Mean of Detected 2836 Mean of Detected 7.675

SD of Detected 1759 SD of Detected 0.852

Minimum Non-Detect 3390 Minimum Non-Detect 8.129

Maximum Non-Detect 5000 Maximum Non-Detect 8.517

Data with Multiple Detection Limits

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

Single Detection Limit Scenario

Number treated as Non-Detect with Single DL 24

Number treated as Detected with Single DL 4

Single DL Non-Detect Percentage 85.71%

Background Statistics

Normal Distribution Test with Detected values Only Lognormal Distribution Test with Detected values On	Normal Distribution Test with Detected Values On	y Lognormal Distribution Test with Detected Values Or	ıly
--	--	---	-----

Shapiro Wilk Test Statistic 0.916 Shapiro Wilk Test Statistic 0.883 5% Shapiro Wilk Critical Value 0.911 5% Shapiro Wilk Critical Value 0.911

Data appear Normal at 5% Significance Level Data not Lognormal at 5% Significance Level

Assuming Normal Distribution Assuming Lognormal Distribution

DL/2 Substitution Method DL/2 Substitution Method Mean 2735 Mean (Log Scale) 7.693 SD 1570 SD (Log Scale) 0.756 95% UTL 95% Coverage 6261 95% UTL 95% Coverage 11970 95% UPL (t) 5457 95% UPL (t) 8126 90% Percentile (z) 4747 90% Percentile (z) 5776 95% Percentile (z) 5318 95% Percentile (z) 7600 99% Percentile (z) 6387 99% Percentile (z) 12719

Maximum Likelihood Estimate(MLE) Method

Log ROS Method

 Mean 4493
 Mean in Original Scale 2607

 SD 481.2
 SD in Original Scale 1656

 95% UTL with 95% Coverage 5574
 95% UTL with 95% Coverage 11910

95% BCA UTL with 95% Coverage 5380

95% Bootstrap (%) UTL with 95% Coverage 5380

95% UPL (t) 7946

90% Percentile (z) 5562

95% Percentile (z) 7410

99% Percentile (z) 12689

Gamma Distribution Test with Detected Values Only

k star (bias corrected) 1.73

A-D Test Statistic 0.73

K-S Test Statistic 0.147

5% A-D Critical Value 0.756

5% K-S Critical Value 0.188

Theta Star 1639

95% UPL (t) 5327

90% Percentile (z) 5110

95% Percentile (z) 5285

99% Percentile (z) 5612

nu star 76.12

Nonparametric Statistics

Data Distribution Test with Detected Values Only

Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Method

Mean 2689

SD 1673

SE of Mean 351.5

95% KM UTL with 95% Coverage 6446

95% KM Chebyshev UPL 10110

95% KM UPL (t) 5589

90% Percentile (z) 4833

95% Percentile (z) 5441

99% Percentile (z) 6581

Assuming Gamma Distribution

Data appear Gamma Distributed at 5% Significance Level

Gamma ROS Statistics with Extrapolated Data

Mean 2719

Median 2715

SD 1656

k star 1.899

Theta star 1432

Nu star 106.4

95% Percentile of Chisquare (2k) 9.159

90% Percentile 5353

95% Percentile 6557

99% Percentile 9234

Gamma ROS Limits with Extrapolated Data

95% Wilson Hilferty (WH) Approx. Gamma UPL 6753

95% Hawkins Wixley (HW) Approx. Gamma UPL 7065

95% WH Approx. Gamma UTL with95% Coverage 870995% HW Approx. Gamma UTL with95% Coverage 9367

Note: DL/2 is not a recommended method.

SELENIUM

General Statistics

Number of Valid Data 29

Number of Distinct Detected Data 7

Tolerance Factor 2.232

Number of Detected Data 7

Number of Non-Detect Data 22

Percent Non-Detects 75.86%

Raw Statistics

Minimum Detected 0.33

Maximum Detected 4.1

Mean of Detected 1.753

Log-transformed Statistics

Minimum Detected -1.109

Maximum Detected 1.411

Mean of Detected 0.208

SD of Detected 1.47 Minimum Non-Detect 0.04 Maximum Non-Detect 2.5 SD of Detected 0.955
Minimum Non-Detect -3.219
Maximum Non-Detect 0.916

Data with Multiple Detection Limits

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods),
Observations < Largest ND are treated as NDs

Single Detection Limit Scenario

Assuming Lognormal Distribution

Number treated as Non-Detect with Single DL 27

Number treated as Detected with Single DL 2

Single DL Non-Detect Percentage 93.10%

Warning: There are only 7 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set
the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Background Statistics

Normal Distribution Test with Detected Values Only	Lognormal Distribution Test with Detected Values Only

Shapiro Wilk Test Statistic 0.876 Shapiro Wilk Test Statistic 0.945 5% Shapiro Wilk Critical Value 0.803 5% Shapiro Wilk Critical Value 0.803

Data appear Normal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Assuming Normal Distribution

 DL/2 Substitution Method
 DL/2 Substitution Method

 Mean 0.678
 Mean (Log Scale) -1.34

 SD 0.972
 SD (Log Scale) 1.567

 95% UTL 95% Coverage 2.847
 95% UTL 95% Coverage 8.658

 95% UPL (t) 2.359
 95% UPL (t) 3.943

 90% Percentile (z) 1.923
 90% Percentile (z) 1.952

 95% Percentile (z) 2.276
 95% Percentile (z) 3.45

 99% Percentile (z) 2.938
 99% Percentile (z) 10.04

Maximum Likelihood Estimate(MLE) Method N/A

Mean in Original Scale 0.495 SD in Original Scale 0.994 Mean in Log Scale -1.897 SD in Log Scale 1.396 95% UTL 95% Coverage 3.388 95% UPL (t) 1.681

Log ROS Method

90% Percentile (z) 0.899 95% Percentile (z) 1.492 99% Percentile (z) 3.865

Gamma Distribution Test with Detected Values Only

k star (bias corrected) 0.987 Theta Star 1.776 Data appear Normal at 5% Significance Level

Page 28 of 34

Data Distribution Test with Detected Values Only

nu star 13.82

k star 0.1

A-D Test Statistic 0.268 **Nonparametric Statistics**

5% A-D Critical Value 0.72 Kaplan-Meier (KM) Method

K-S Test Statistic 0.175 Mean 0.696 SD 0.906 5% K-S Critical Value 0.317

Data appear Gamma Distributed at 5% Significance Level SE of Mean 0.184

95% KM UTL with 95% Coverage 2.717

95% KM Chebyshev UPL 4.71 **Assuming Gamma Distribution**

Gamma ROS Statistics with Extrapolated Data 95% KM UPL (t) 2.262

> Mean 0.423 90% Percentile (z) 1.856 Median 0.000001 95% Percentile (z) 2.185

SD 1.023 99% Percentile (z) 2.802

Theta star 4.213 Gamma ROS Limits with Extrapolated Data

Nu star 5.825 95% Wilson Hilferty (WH) Approx. Gamma UPL 1.552

95% Percentile of Chisquare (2k) 1.166 95% Hawkins Wixley (HW) Approx. Gamma UPL 1.461

95% WH Approx. Gamma UTL with 95% Coverage 2.822

90% Percentile 1.128 95% HW Approx. Gamma UTL with 95% Coverage 3.183 95% Percentile 2.455

Note: DL/2 is not a recommended method.

SODIUM

General Statistics

Total Number of Observations 28 Number of Distinct Observations 28

Tolerance Factor 2.246

99% Percentile 6.706

Raw Statistics Log-Transformed Statistics

> Minimum 10100 Minimum 9.22

Maximum 12.01 Maximum 165000 Second Largest 152000 Second Largest 11.93

First Quartile 25650 First Quartile 10.15

Third Quartile 92475 Third Quartile 11.43

Median 10.61

Mean 60968 Mean 10.73

Geometric Mean 45803 SD 0.783

SD 46930

Coefficient of Variation 0.77

Skewness 1.004

Median 40500

Background Statistics

Normal Distribution Test Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.843 Shapiro Wilk Critical Value 0.924

Shapiro Wilk Test Statistic 0.955 Shapiro Wilk Critical Value 0.924

Data not Normal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Assuming Normal Distribution

95% UTL with 95% Coverage 166373

95% UPL (t) 142318

90% Percentile (z) 121111

95% Percentile (z) 138161

99% Percentile (z) 170144

Assuming Lognormal Distribution

95% UTL with 95% Coverage 265626

95% UPL (t) 177852

90% Percentile (z) 124874

95% Percentile (z) 165940

99% Percentile (z) 282865

Gamma Distribution Test

k star 1.718

Theta Star 35479

MLE of Mean 60968

MLE of Standard Deviation 46509

nu star 96.23

Data Distribution Test

Data appear Gamma Distributed at 5% Significance Level

A-D Test Statistic 0.686

5% A-D Critical Value 0.759

K-S Test Statistic 0.142

5% K-S Critical Value 0.168

Nonparametric Statistics

95% Percentile 148850

Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

90% Percentile 122931

95% Percentile 151839

99% Percentile 216554

95% WH Approx. Gamma UPL 155563

95% HW Approx. Gamma UPL 159367

95% WH Approx. Gamma UTL with 95% Coverage 202800

95% HW Approx. Gamma UTL with 95% Coverage 212950

90% Percentile 136700

99% Percentile 161490

95% UTL with 95% Coverage 165000

95% Percentile Bootstrap UTL with 95% Coverage 165000

95% BCA Bootstrap UTL with 95% Coverage 165000

95% UPL 159150

95% Chebyshev UPL 269153

Upper Threshold Limit Based upon IQR 192713

THALLIUM

General Statistics

Number of Valid Data 28

Number of Distinct Detected Data 1

Number of Detected Data 1

Number of Non-Detect Data 27

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set! It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable THALLIUM was not processed!

VANADIUM

General Statistics

Number of Valid Data 28 Number of Detected Data 5 Number of Distinct Detected Data 5 Number of Non-Detect Data 23 Tolerance Factor 2.246 Percent Non-Detects 82.14%

Raw Statistics

Minimum Detected 2.1 Maximum Detected 17.9 Mean of Detected 9.154 SD of Detected 6.155 Minimum Non-Detect 0.06 Maximum Non-Detect 3

Log-transformed Statistics

ioa otationioo	
Minimum Detected	0.742
Maximum Detected	2.885
Mean of Detected	1.984
SD of Detected	0.822
Minimum Non-Detect	-2.813
Maximum Non-Detect	1.099

Data with Multiple Detection Limits

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

Single Detection Limit Scenario

Number treated as Non-Detect with Single DL 24 Number treated as Detected with Single DL 4 Single DL Non-Detect Percentage 85.71%

Warning: There are only 5 Detected Values in this data Note: It should be noted that even though bootstrap may be performed on this data set the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Background Statistics

Normal Distribution Test with Detected Values Only	Lognormal Distribution Test with Detected Values Only
Shapiro Wilk Test Statistic 0.969	Shapiro Wilk Test Statistic 0.96
5% Shapiro Wilk Critical Value 0.762	5% Shapiro Wilk Critical Value 0.762
Data appear Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level

Assuming	Normal	Distribution
-----------------	--------	--------------

ormal Distribution	Assuming Lognormal Distribution
DL/2 Substitution Method	DL/2 Substitution Method
Mean 2.136	Mean (Log Scale) -0.399
SD 4.106	SD (Log Scale) 1.575
95% UTL 95% Coverage 11.36	95% UTL 95% Coverage 23.04
95% UPL (t) 9.254	95% UPL (t) 10.28
90% Percentile (z) 7.398	90% Percentile (z) 5.046
95% Percentile (z) 8.89	95% Percentile (z) 8.941
99% Percentile (z) 11.69	99% Percentile (z) 26.15

Maximum Likelihood Estimate(MLE) Method

Log ROS Method

Mean N/A Mean in Original Scale 1.867 SD N/A SD in Original Scale 4.202 95% UTL with 95% Coverage N/A 95% UTL with 95% Coverage 17.84 95% BCA UTL with 95% Coverage 17.9 95% Bootstrap (%) UTL with 95% Coverage 17.9 95% UPL (t) 95% UPL (t) 7.26 N/A 90% Percentile (z) 3.286 90% Percentile (z) N/A 95% Percentile (z) N/A 95% Percentile (z) 6.215 99% Percentile (z) 99% Percentile (z) 20.54 N/A Gamma Distribution Test with Detected Values Only **Data Distribution Test with Detected Values Only** k star (bias corrected) 1.064 Data appear Normal at 5% Significance Level Theta Star 8.601 nu star 10.64 A-D Test Statistic 0.189 Nonparametric Statistics 5% A-D Critical Value 0.684 Kaplan-Meier (KM) Method K-S Test Statistic 0.163 Mean 3.36 5% K-S Critical Value 0.36 SD 3.565 Data appear Gamma Distributed at 5% Significance Level SE of Mean 0.753 95% KM UTL with 95% Coverage 11.37 **Assuming Gamma Distribution** 95% KM Chebyshev UPL 19.18

Gamma ROS Statistics with Extrapolated Data

Mean 1.635 Median 0.000001 SD 4.285

k star 0.0893 Theta star 18.31

Nu star 5

95% Percentile of Chisquare (2k) 1.041

90% Percentile 4.127 95% Percentile 9.524

99% Percentile 27.46

95% KM UPL (t) 9.54

90% Percentile (z) 7.929

95% Percentile (z) 9.224

99% Percentile (z) 11.65

Gamma ROS Limits with Extrapolated Data

95% Wilson Hilferty (WH) Approx. Gamma UPL 5.341 95% Hawkins Wixley (HW) Approx. Gamma UPL 4.45 95% WH Approx. Gamma UTL with 95% Coverage 10.04

95% HW Approx. Gamma UTL with 95% Coverage 10.18

Note: DL/2 is not a recommended method.

ZINC

General Statistics

Number of Valid Data 28 Number of Distinct Detected Data 23 Tolerance Factor 2.246

Number of Detected Data 23 Number of Non-Detect Data 5 Percent Non-Detects 17.86%

Raw Statistics

Log-transformed Statistics

Minimum Detected 2.16	Minimum Detected 0.77
Maximum Detected 161	Maximum Detected 5.081
Mean of Detected 49.45	Mean of Detected 3.406
SD of Detected 45.66	SD of Detected 1.115
Minimum Non-Detect 1.1	Minimum Non-Detect 0.0953
Maximum Non-Detect 10	Maximum Non-Detect 2.303

Data with Multiple Detection Limits

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

Single Detection Limit Scenario

Number treated as Non-Detect with Single DL 8

Number treated as Detected with Single DL 20

Single DL Non-Detect Percentage 28.57%

Kaplan-Meier (KM) Method

Background Statistics				
Normal Distribution Test with Detected Values Only	Lognormal Distribution Test with Detected Values Only			
Shapiro Wilk Test Statistic 0.861	Shapiro Wilk Test Statistic 0.962			
5% Shapiro Wilk Critical Value 0.914	5% Shapiro Wilk Critical Value 0.914			
Data not Normal at 5% Significance Level	Data appear Lognormal at 5% Significance Level			
Assuming Normal Distribution	Assuming Lognormal Distribution			
DL/2 Substitution Method	DL/2 Substitution Method			
Mean 41.24	Mean (Log Scale) 2.967			
SD 44.96	SD (Log Scale) 1.441			
95% UTL 95% Coverage 142.2	95% UTL 95% Coverage 494.9			
95% UPL (t) 119.2	95% UPL (t) 236.4			
90% Percentile (z) 98.86	90% Percentile (z) 123.3			
95% Percentile (z) 115.2	95% Percentile (z) 208.1			
99% Percentile (z) 145.8	99% Percentile (z) 555.7			
Maximum Likelihood Estimate(MLE) Method	Log ROS Method			
Mean 32.35	Mean in Original Scale 41.26			
SD 55.23	SD in Original Scale 44.94			
95% UTL with 95% Coverage 156.4	95% UTL with 95% Coverage 418.2			
	95% BCA UTL with 95% Coverage 161			
	95% Bootstrap (%) UTL with 95% Coverage 161			
95% UPL (t) 128.1	95% UPL (t) 209.4			
90% Percentile (z) 103.1	90% Percentile (z) 113.8			
95% Percentile (z) 123.2	95% Percentile (z) 185.8			
99% Percentile (z) 160.8	99% Percentile (z) 466.1			
Gamma Distribution Test with Detected Values Only	Data Distribution Test with Detected Values Only			
k star (bias corrected) 1.028	Data appear Gamma Distributed at 5% Significance Level			
Theta Star 48.1				
nu star 47.29				
A-D Test Statistic 0.381	Nonparametric Statistics			

5% A-D Critical Value 0.767

K-S Test Statistic 0.134 5% K-S Critical Value 0.186

Data appear Gamma Distributed at 5% Significance Level SE of Mean 8.535

Mean 41.23

SD 44.16

95% KM UTL with 95% Coverage 140.4

95% Percentile 205 99% Percentile 428.4

Assuming Gamma Distribution 95% KM Chebyshev UPL 237.1
Gamma ROS Statistics with Extrapolated Data 95% KM UPL (t) 117.8

 Mean 40.62
 90% Percentile (z) 97.82

 Median 23.1
 95% Percentile (z) 113.9

SD 45.5 99% Percentile (z) 144 k star 0.216

Theta star 187.8 **Gamma ROS Limits with Extrapolated Data**Nu star 12.11 95% Wilson Hilferty (WH) Approx. Gamma UPL 175.6

95% Percentile of Chisquare (2k) 2.183 95% Hawkins Wixley (HW) Approx. Gamma UPL 233.8

95% Percentile of Chisquare (2k) 2.183 95% Hawkins Wixley (HW) Approx. Gamma UPL 233.8 95% WH Approx. Gamma UTL with 95% Coverage 268.3 90% Percentile 122.8 95% HW Approx. Gamma UTL with 95% Coverage 401

Note: DL/2 is not a recommended method.